
A

Bounded Repairability for Regular Tree Languages

Pierre Bourhis, CNRS – CRIStAL UMR 9189, pierre.bourhis@univ-lille1.fr
Gabriele Puppis, CNRS – LaBRI, University of Bordeaux, gabriele.puppis@labri.fr
Cristian Riveros, Dep. of Computer Science, Pontificia Universidad Católica de Chile,
cristian.riveros@uc.cl
Sławek Staworko, INRIA Lille-Nord Europe, University of Lille & LFCS, University of Edinburgh,
slawomir.staworko@inria.fr

We study the problem of bounded repairability of a given restriction tree language R into a target tree
language T . More precisely, we say that R is bounded repairable w.r.t. T if there exists a bound on the
number of standard tree editing operations necessary to apply to any tree in R in order to obtain a tree in
T . We consider a number of possible specifications for tree languages: bottom-up tree automata (on curry
encoding of unranked trees) that capture the class of XML Schemas and DTDs. We also consider a special
case when the restriction language R is universal, i.e., contains all trees over a given alphabet.

We give an effective characterization of bounded repairability between pairs of tree languages represented
with automata. This characterization introduces two tools, synopsis trees and a coverage relation between
them, allowing one to reason about tree languages that undergo a bounded number of editing operations. We
then employ this characterization to provide upper bounds to the complexity of deciding bounded repairabil-
ity and we show that these bounds are tight. In particular, when the input tree languages are specified with
arbitrary bottom-up automata, the problem is CONEXP-complete. The problem remains CONEXP-complete
even if we use deterministic non-recursive DTDs to specify the input languages. The complexity of the prob-
lem can be reduced if we assume that the alphabet, the set of node labels, is fixed: the problem becomes
PSPACE-complete for non-recursive DTDs and CONP-complete for deterministic non-recursive DTDs. Fi-
nally, when the restriction tree language R is universal, we show that the bounded repairability problem
becomes EXP-complete if the target language is specified by an arbitrary bottom-up tree automaton and
becomes tractable (P-complete, in fact) when a deterministic bottom-up automaton is used.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages - Data manipulation lan-
guages; H.2.5 [Database Management]: Heterogeneous Databases - Data translation

General Terms: Algorithms, Languages, Theory

Additional Key Words and Phrases: XML, XML Schema, DTD, Repair, Edit distance

ACM Reference Format:
ACM Trans. Embedd. Comput. Syst. V, N, Article A (January YYYY), 50 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

The first author was supported by CPER Nord-Pas de Calais/FEDER DATA Advanced data science and tech-
nologies 2015-2020. The research leading to these results has been partly funded by the EPSRC (UK) grant
EP/G004021/1 and by the EU project FOX (FP7-ICT-233599). The second author was partially supported
by ExStream project (ANR-13-JS02-0010). The third author was supported by CONICYT + PAI / Concurso
Nacional Apoyo al Retorno de Investigadores/as desde el extranjero – Convocatoria 2013 + 821320001 and
by the Millenium Nucleus Center for Semantic Web Research under grant NC120004. The fourth author
has been supported by the EU FP7 DIACHRON project.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
© YYYY ACM 1539-9087/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

pierre.bourhis@univ-lille1.fr
gabriele.puppis@labri.fr
cristian.riveros@uc.cl
slawomir.staworko@inria.fr

A:2

1. INTRODUCTION
A basic problem in data management is to ensure that data is valid, namely, satis-
fies all integrity constraints associated with a schema [Bertossi 2011]. Validation of
data with respect to a schema is crucial in any database system: if data does not sat-
isfy the integrity constraints, then one cannot guarantee that the output produced by
the system is correct. Nevertheless, when data does not satisfy constraints, a natural
approach is to attempt a repair, that is, to modify the data minimally so that it be-
comes valid [Arenas et al. 1999; Afrati and Kolaitis 2009]. We may want to perform
this transformation on the data, or may be merely interested in knowing how difficult
it is to perform the transformation in case of need – that is, determining how far a
given collection of data is from satisfying the specification. For example, some applica-
tions may retain input data even when this contains a few errors, where “few” could
be interpreted as a user-defined bound to the total number of errors or to the fraction
of errors over the size of the input [Grahne and Thomo 2004].

On relational data, this problem has been extensively studied under the notion of
constraint repair (see e.g. [Arenas et al. 1999; Afrati and Kolaitis 2009]): in this case
the specifications are given by relational integrity constraints, such as keys and for-
eign keys, and the problem asks to determine how much a database needs to be mod-
ified in order to satisfy a given constraint. This approach has been investigated for
a variety of integrity constraints, starting with classical functional and inclusion de-
pendencies [Arenas et al. 1999] and continuing with more expressive constraints such
as tuple generating dependencies [Afrati and Kolaitis 2009]. Also, a number of differ-
ent repair operators have been considered in the relational case, including insertions,
deletions, and modifications of tuples. Besides finding repairs of relations, this line of
research also focuses on querying inconsistent documents via their minimal repairs.

In the XML framework, malformed or non-conformant documents are more the rule
than the exception [Chen et al. 2005; Ofuonye et al. 2010]. Indeed, a recent study [Gri-
jzenhout and Marx 2013] shows that, although most XML documents are well-formed
(more than 85%), only 25% of them reference a downloaded schema. Even worse, in
this study it is shown that less than 10% of XML documents satisfy their downloaded
schema. This means that most of the XML data on the web can be read, but only a
small part of it can be processed automatically. In this scenario, it is natural to look
for automatic repairing XML data with respect to a target schema. The idea is that an
automatic repair process receives an invalid XML document and produces the best se-
quence of edit operations that results in a document satisfying the target schema. The
edit operations should respect the nested structure of the XML document and modify
the document in a minimal way.

The notion of repair for XML data is defined in a natural way when considering docu-
ments as trees: in this case, a repair can be simply defined as the tree edit distance [Tai
1979] between the input tree and the repaired tree, that is, the number of atomic edit
operations that are needed to get from one tree to another. An atomic edit operation
here amounts at inserting, deleting, or modifying a single node in a tree [Bille 2005].
Edit distance can then be lifted to a measure of distance dist(t, T) of a tree t from a
specification T : this is nothing but the minimal distance of t to any tree satisfying T .
In our setting, t can be seen as an XML document and T as an XML schema, and hence
dist(t, T) measures how difficult it is to repair the data t so as to satisfy T . Further-
more, dist(t, T) can be computed efficiently when T is a regular language (e.g. DTD or
XSD) specified by means of an automaton [Wagner 1974; Aho and Peterson 1972].

In this paper, we take the next step in repairing XML documents or trees: given
two regular specifications S and T over trees, we aim at calculating how difficult it is,
in the worst-case, to transform an object satisfying S into an object satisfying T . The

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:3

problem is motivated by considering S to be a source, i.e. a constraint that the input is
guaranteed to satisfy, and T to be a target, i.e. a constraint that needs to be enforced.
More precisely, we consider the worst-case over all trees t satisfying S of the minimum
number of edit operations needed to transform t into some tree in T , that is,

cost(S,T) = sup
t∈S

dist(t, T) = sup
t∈S

min
t′∈T

dist(t, t′).

Of course, the above cost may be infinite. In this work, we isolate the pairs of schemas
S and T such that cost(S,T) is finite and we give optimal procedures to decide when
this happens, namely, when schema S is “almost contained” in schema T . Specifically,
we say that S is bounded repairable into T when cost(S,T) < ∞, that is, when every
document t in S can be repaired to a document t′ in T by applying a finite, uniformly
bounded number of edits.

The notion of bounded repair is also motivated by the schema matching prob-
lem [Rahm and Bernstein 2001]: we would like to identify whether two schemas are
semantically related. In our setting, the semantic relation between two schemas is con-
sidered at a very low level, namely, each schema is seen as a set of documents and not
as a set of rules. Then the bounded repair problem states that a source schema S is
related to a schema T if any XML document satisfying S can be transformed with a fi-
nite, uniformly bounded number of operations into a document satisfying T . Here, it is
important to notice that our repair operations are designed to only consider the struc-
tural part of the data. Further research needs to be done to include in the analysis the
data itself, e.g., the constraints between attribute values in XML documents, as this
is a very important aspect to take into account when reasoning on and transforming
XML documents.

The following examples give an account of some of the difficulties of telling whether
one schema is bounded repairable into another.

Example 1.1. Recall that languages of unranked trees can be specified by means
of DTDs, that is, by sets of rules of the form a → La, where La is a regular language
describing the possible sequences of children of an a-labeled node. For the sake of
brevity, we will often omit from DTDs the rules of the form a → ε, which denote the
fact that a-labeled nodes are leaves.

Consider the following DTDs:

S ∶ r → d c∗ T ∶ r → a∗ e
d → a∗ b∗ e → b∗ c∗

The left-hand side schema S defines the language of all trees of the form
r(d(a, . . . , a, b, . . . , b), c, . . . , c), while the right-hand side schema T defines the language
of all trees of the form r(a, . . . , a, e(b, . . . , b, c, . . . , c)). We claim that S is repairable
into T with a uniformly bounded number of edit operations. Indeed, given a tree
r(d(a, . . . , a, b, . . . , b), c, . . . , c) satisfying S, one can first delete the node labeled by d,
obtaining the tree r(a, . . . , a, b, . . . , b, c, . . . , c), and then insert a new e-labeled node un-
der the root, which adopts as children all the nodes labeled by b or c; this results in a
tree r(a, . . . , a, e(b, . . . , b, c, . . . , c)) that satisfies T .

Example 1.2. Consider the following DTDs:

S′ ∶ r → a T ′ ∶ r → a
a → b∗ a → b∗ c

It is easy to see that S′ is bounded repairable into T ′: any tree r(a(b, . . . , b)) in S′ can
be modified into a tree in T ′ by inserting a new c-labeled node as a right-sibling of the
nodes labeled by b. However, if we replace in both DTDs S′ and T ′ the rule r → a

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

with the rule r → a∗, we obtain a new pair of languages S′′ and T ′′ such that S′′
is not bounded repairable into T ′′. This example suggests that bounded repairability
depends on some interplay between the rules of DTDs and, more generally, between
the specifications of the labellings of the nodes at different levels of the trees.

We will deal with the notion of bounded repairability for schemas that are more gen-
eral than DTDs, e.g., schemas that are given by regular tree languages [Schwentick
2007], and which capture the structural part of the W3C’s XML schema [Fallside and
Walmsley 2004]. We will formalize the edit distance between regular tree languages,
and from this define the bounded repair problem, that is, the problem of deciding
bounded repairability between two given tree languages S and T . Our main result is
that it is decidable whether or not S can be repaired into T with a uniformly bounded
number of edits.

For regular languages of words, the bounded repair problem was resolved in
[Benedikt et al. 2013]. There, it was shown that the problem is CONP-complete when
the languages are represented by deterministic finite state automata, and a character-
ization of bounded repairability was given using a coverability relation between chains
of connected components of the automata. In the case of tree languages, the problem
turns out to be more complex, both in terms of complexity and in terms of proof tech-
niques that are required to solve it. We will provide a characterization of bounded
repairability that exploits a suitable notion of component of a stepwise tree automaton
[Carme et al. 2004], a form of automaton that turns out to be particularly convenient
for analyzing repairs. An additional complication for the tree case is that we need to
consider structures of connected components of stepwise tree automata that take the
form of trees, rather than chains. Our characterization of the bounded repairability of
S into T requires that every component structure of S can be “covered” by a component
structure of T . The notion of covering is subtle, and the proof that it captures bounded
repairability requires lifting the notion of edit from the level of the individual trees to
the level of the component trees associated with the automata for S and T .

With an effective characterization at hand, we can decide the bounded repairabil-
ity problem, and with some additional optimizations we can give tight complexity
bounds. It turns out that, differently from the string setting, the bounded repairability
problem is equally complex no matter whether the tree languages are given by non-
deterministic automata, deterministic automata, DTDs, or even non-recursive DTDs.
Indeed, for all these cases the bounded repair problem is CONEXP-complete. We then
look for tractable cases that are obtained by further restricting the tree specifications.
For example, we show that the bounded repairability problem becomes much simpler
when the source alphabet is fixed and the languages are given by deterministic DTDs,
or when the source language is assumed to be trivial, namely, the set of all trees over
a given finite alphabet.

New material in this paper. Preliminary versions of some of the results in this
paper appeared in [Anonymous]. However, this paper contains substantial new ma-
terial. We include a full proof of the main characterization result (Theorem 5.7). The
upper bounds to the number of repairs (Lemma 5.5 and Proposition 5.8) are also new.
As concerns the complexity of deciding bounded repairability, the paper provides new
complexity bounds that are moreover tight. In [Anonymous], it was shown that the
bounded repair problem for regular tree languages is decidable in ΠEXP

2 and is EXP-
hard. Here, we show that the problem is actually CONEXP-complete (Theorems 7.3
and 7.4). We finally include new examples and proofs of other claims that were omit-
ted in [Anonymous].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:5

Organization. The paper is organized as follows. In Section 2 we discuss some related
work. In Section 3 we give some preliminaries on trees and regular tree languages
and in Section 4 we define the bounded repairability problem for tree languages. In
Section 5 we give the formal statement of our main result, that is, a characterization
of those pairs of schemas that are bounded repairable. Section 6 gives a detailed proof
of the characterization. In Section 7 we analyze in detail the complexity of the bounded
repairability problem. In Section 8 we give another, simple characterization of bounded
repairability for the case where the source language is universal, and we accordingly
derive new complexity results. Finally, in Section 9 we give our conclusions and future
work.

2. RELATED WORK
Ever since their conception, computers required the input data to follow a set of strict
structural and semantic rules and the failure to do so typically resulted in operations
producing unpredictable outputs, a well-know phenomenon of Garbage In, Garbage
Out [Babbage 1864]. While initially this phenomenon was attributed to situations of er-
roneous manual data entry, with the ever increasing number of applications exchang-
ing data the phenomenon has gained a new meaning describing potential problems
occurring when two applications attempt to communicate with incompatible proto-
cols [Lidwell et al. 2010]. While our research aims at solving the problems of the latter
scenario, very early in the development of computer science we did see solutions to
the problems resulting from erroneous manual data entry. One prominent example
is the work on error-correcting parser for context-free languages [Aho and Peterson
1972], where a malformed input string is repaired by applying a (minimal) number of
editing operations that make it conform to the given grammar. In [Korn et al. 2013]
Kron et al., consider a very similar problem for XML where a serialization of an XML
document is not well-formed (e.g., mismatching opening and closing tags or misspelled
tag names) and is repaired to allow parsing into an XML tree. A slightly different vari-
ant of the problem is repairing well-formed XML with respect to a given schema, in the
form of a DTD [Suzuki 2005; Staworko and Chomicki 2006] or XML Schema [Staworko
et al. 2008]. The validity of the XML document is restored using a minimal set of edit-
ing operations (insertion, deletion, and renaming of nodes). Adding a move operation
that can change the relative order of elements is challenging because of fundamen-
tal computational limitations [Cormode and Muthukrishnan 2007] and approximate
measures have been studied for this operation [Boobna and de Rougemont 2004]. Fur-
thermore, repairing XML documents with respect to analogues of classical relational
constraints (key and inclusion dependencies) has also been studied [Flesca et al. 2005].
HTML documents often violate the syntactic rules of well-formedness and the struc-
tural rules imposed by the HTML standard, and consequently, repairing them requires
methods that diligently combine the approaches of editing the textual serialization and
editing the tree representation of the input document [Chen et al. 2005; Ofuonye et al.
2010].

The problem we study is, however, more general than repairing a single input XML
document w.r.t. a given schema, because we are interested in repairing any input docu-
ment drawn from a possibly infinite set of documents with a number of operations that
is independent on the size of the XML document. One could attempt to approximate
the bound on the number of required editing operations by randomly generating the
input document [Antonopoulos et al. 2013] and then computing their edit distance to
the target regular language. Because in our setting, the input document is drawn from
a regular language and is repaired w.r.t. another regular language, the problem is in
fact a generalization of a well known and thoroughly-studied problem of containment
of two schemas [Comon et al. 2007; Colazzo et al. 2013; Martens et al. 2009]. Closely

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

related is the problem of measuring similarity between two schemas based on a notion
of embeddings studied in [Fan and Bohannon 2008]. There are, however, significant
differences: on the one hand, our semantic characterization of bounded reparability is
stronger than the structural similarity determined with embeddings but on the other
hand, the framework of [Fan and Bohannon 2008] introduces an additional challenge:
it requires the embeddings to be information preserving i.e., for any query that can
be evaluated on a document from the source schema there exists an equivalent query
over the corresponding document from the target schema.

The preservation of information expressed with queries is the essence of data ex-
change source-to-target mappings and finding (target) solutions for a given source doc-
ument is a difficult problem in the context of XML [Arenas and Libkin 2008; Amano
et al. 2009]. In this setting, the problem of absolute consistency [Bojańczyk et al. 2011],
checking that a solution exists for any possible source instance, bears strong resem-
blance to the problem of reparability except that it does not call for using editing
operations, and consequently, it does not impose any limit on the number of editing
operations but merely inquires the possibility of always finding a solution. In fact, the
authors propose a solution that uses a notion of a kind in a manner analogous to the
connected components used in our approach.

3. REGULAR LANGUAGES OF TREES
In this paper, we will work with finite unranked ordered trees whose nodes are labeled
over a finite alphabet Σ. Formally, the set of finite unranked ordered trees over Σ (here-
after, simply trees) is inductively defined as follows: (1) every symbol a ∈ Σ is a tree; (2)
if a ∈ Σ, n ∈ N, and t1, . . . , tn are trees, then a(t1, . . . , tn) is a tree. A sequence of Σ-trees
t1 ⋅ . . . ⋅ tn is called a forest. As an example, the left-hand side of Figure 1 shows a tree
over the alphabet Σ = {r, a, b, c, d}. We denote by TΣ the set of all trees over Σ. A (tree)
language over Σ is any subset L of TΣ.

It is useful to identify nodes of an unranked tree with sequences of positive natural
numbers. Given a tree t of the form a(t1, . . . , tn), its domain is the subset of N∗ that is
formally defined as nodes(t) = {ε} ∪ {i ⋅ x ∣ x ∈ nodes(ti) ∧ 1 ≤ i ≤ n}. Note that the root
of a tree is represented by ε. Finally, for every node x ∈ nodes(t), we denote by t(x) the
label of x in t.

Given a tree t, we introduce two partial orders on the domain nodes(t), which are
called ancestor order and post-order and are denoted by ≼anct and ≼postt , respectively. The
ancestor order ≼anct is nothing but the prefix order on the sequences of positive natural
numbers that identify the nodes of t, that is, x ≼anct y if and only if x is a prefix of y.
The post-order ≼postt is the total ordering on the nodes of t (i.e. sequences of natural
numbers) defined by x ≼postt y if and only if y is a prefix of x or there exist z, x′, y′ ∈ N∗
and i, j ∈ N such that x = z ⋅ i ⋅ x′, y = z ⋅ j ⋅ y′, and i ≤ j.
DTDs. We will manipulate regular languages of trees mainly by means of automaton-
based specifications, which will be formally defined in the next paragraphs. However,
we will use less expressive specifications, such as XML Document Type Definitions, to
give examples of simple tree languages.

An XML Document Type Definition (DTD for short) is defined as a tuple D = (Σ, d, I),
where Σ is a finite alphabet, d is a function that maps symbols from Σ to regular
expressions over Σ, and I ⊆ Σ is the set of initial symbols [Comon et al. 2007]. A tree
t satisfies the DTD D if t(ε) ∈ I and, for every x ∈ nodes(t), the word t(x ⋅ 1) ⋅ . . . ⋅
t(x ⋅ n) belongs to the language defined by the regular expression d(t(x)), where n is
the number of children of x in t. We denote by L (D) the language of trees satisfying
the DTD D. We will often omit the rules of the form a → ε, as well as the set of initial
symbols from the definition of a DTD when this set is understood from the context (e.g.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:7

r

a

a

d

b

a

a

a

c c c ext

@
@

r @
a a @

@
@

@
d @
b @
a @
a a

c
c
c

d

●

a

a

a

c c c
ext

@
@

@
@

d @
● @
a @
a a

c
c
c

Fig. 1. Curry encodings of an unranked tree and a context.

when it consists of a single symbol r). As an example, consider the DTD:

D ∶ r → a d d → b c∗

a → a + ε b → a

One can easily check that the left-hand side tree of Figure 1 satisfies the above DTD D.
It is known that DTDs define a proper subclass of regular tree languages [Martens

et al. 2006; Martens and Niehren 2007]. Quite interestingly, most of our complexity
lower bounds for the bounded repair problem hold even for languages defined by DTDs
(see Section 7 for more details).

We will also consider languages defined by non-recursive deterministic DTDs, which
are often used in practice and have been studied extensively in [Segoufin and Vianu
2002; Segoufin and Sirangelo 2007]. Let us define the dependency graph of a DTD
D = (Σ, d, I) as the directed graph whose nodes are the letters in Σ and whose edges
connect any letter a to a letter b whenever b occurs in the language specified by the
regular expression d(a). A DTD D is called non-recursive if its dependency graph
is acyclic. A DTD D is called deterministic if each regular expression d(a) is one-
unambiguous (namely, it can be equally seen as a deterministic finite state automaton)
[Brüggemann-Klein and Wood 1998] and the set of initial symbols is a singleton.

Curry encoding. To ease the definitions of the automaton model and the reasoning
on tree repairs, we introduce here the notion of curry encoding, also known as exten-
sion encoding, of a tree [Carme et al. 2004; Martens and Niehren 2007]. According to
this encoding any unranked tree over Σ is seen as a binary tree with leaves labeled
over Σ and internal nodes labeled by a distinguished symbol @. Formally, the curry
encoding is the function ext that injectively maps unranked trees to binary trees as
follows:

ext(a) = a,
ext(a(t1, . . . , tn)) = @(ext(a(t1, . . . , tn−1), ext(tn))).

To ease readability, we use the symbol @ as a binary, infix, left-associative operator: for
instance, ext(a(t1, . . . , tn)) = a@ext(t1)@ . . .@ext(tn). The left-hand side of Figure 1 il-
lustrates the encoding of an unranked tree. The inverse ext−1 of the encoding is defined
by providing the symbol @ with the semantics of the extension operator on unranked
trees and by evaluating the expression in a bottom-up fashion, i.e., ext−1(a) = a and
ext−1(a@t1@ . . .@tn) = a(ext−1(t1), . . . , ext−1(tn)).

We observe that there is a one-to-one correspondence between the nodes of an un-
ranked tree and the leaves of the curried encoding. In particular, the root node of an
unranked tree corresponds to the left-most leaf of its curry encoding. Moreover, the
yield of a curried tree, i.e., the sequence of leaves taken from left to right, corresponds

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

to the standard left-to-right pre-order traversal of the corresponding unranked tree.
Another observation follows from the semantics of the extension operator: the inner
nodes of a curried tree, labeled with @, correspond to the edges of the unranked tree.

Hereafter, we will identify unranked trees with their curry encodings. In particular,
by a slight abuse of notation, we will denote by TΣ the set of all curry encodings of trees
over Σ, and by nodes(t) the domain of the curry encoding of a tree t.

Contexts. We now fix another special symbol ● /∈ Σ that will be used as a placeholder
for contexts. Formally, a (curried) context over Σ is the curry encoding of a tree over
the alphabet Σ ∪ {●}, with a single node labeled by ● (note that, in the curry encoding,
the symbol ● must occur in a leaf). We denote by CΣ the set of all contexts over Σ. The
empty context is the context ● having exactly one node. The right-hand side of Figure 1
illustrates the encoding of a context. A context C is horizontal if the placeholder ● is
the leftmost leaf of C. We point out that a horizontal context has the form ●@t1@ . . .@tn
and represents the forest – i.e. a sequence of trees – (ext−1(t1), . . . , ext−1(tn)). Note that
the empty context is horizontal.

For a context C and a tree t, we denote by C○t the tree obtained from the substitution
of ● by t in C. Similarly, the composition C1 ○C2 of two contexts C1 and C2 is obtained
from the substitution of the placeholder in C1 by C2 (this results again in a context in
CΣ). The composition of two horizontal contexts is also horizontal and corresponds to
concatenation of the corresponding forests of unranked trees. Note, however, that the
difference in the order of context composition and the order of forest concatenation: if
C = ●@t1@ . . .@tn and C ′ = ●@t′1@ . . .@t′m, then C ○C ′ = ●@t′1@ . . .@t′m@t1@ . . .@tn, which
represents the forest (ext−1(t′1), . . . , ext−1(t′m), ext−1(t1), . . . , ext−1(tn)).
Stepwise tree automata. We use stepwise tree automata to specify regular tree lan-
guages. These are essentially bottom-up tree automata running on the curry encodings
of trees [Carme et al. 2004; Martens and Niehren 2007; Comon et al. 2007]. Formally,
a stepwise automaton is a tuple A = (Σ,Q, δ, δ0, F), where:

(1) Σ is a finite set of labels,
(2) Q is a finite set of states,
(3) δ ∶ Q ×Q→ 2Q is a transition function,
(4) δ0 ∶ Σ→ 2Q is an assignment of initial states to labels, and
(5) F ⊆ Q is a set of final states.

We say that the automaton A is deterministic if δ0 (respectively, δ) can be described as
a partial function from Σ (respectively, Q ×Q) to Q. It is often convenient to represent
δ0 and δ as a set of rules. For instance, we write a → q to indicate that q ∈ δ0(a) and
q1@q2 → q to indicate that q ∈ δ(q1, q2).

A run of a stepwise automaton A = (Σ,Q, δ0, δ, F) on a tree t ∈ TΣ is a function
ρ ∶ nodes(t) → Q such that (1) for every leaf node x, ρ(x) ∈ δ0(t(x)), and (2) for every
inner node x, ρ(x) ∈ δ(ρ(x⋅1), ρ(x⋅2)) (recall that we represent twith its curry encoding).
A run ρ is accepting if ρ(ε) ∈ F . The language recognized by A, denoted L (A), is the
set of all trees t ∈ TΣ on which A has an accepting run.

Example 3.1. The following will serve as our running example. Consider two DTDs:

D ∶ r → a d D′ ∶ r → d c∗
a → a + ε d → a a
d → b c∗ a → a + b
b → a

The following two stepwise automata capture (modulo the curry encoding) the lan-
guages defined by the previous DTDs (the underlined states are final and each rule

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:9

@

@

r @

a a @

@

@

@

d @

b @

a @

a a

c

c

c

pr2

pr1

pr0 pa1

pa0 pa0 pd1

pd1

pd1

pd1

pd0 pb1

pb0 pa1

pa0 pa1

pa0 pa0

pc0

pc0

pc0

@

@

@

@

r @

@

d @

a @

a b

@

a @

a @

a b

c

c

c

qr1

qr1

qr1

qr1

qr0 qd2

qd1

qd0 qa1

qa0 qa1

qa0 qb0

qa1

qa0 qa1

qa0 qa1

qa0 qb0

qc0

qc0

qc0

Fig. 2. Runs of two stepwise tree automata over curried trees.

with qa? translates to two rules with qa0 and qa1):

S ∶ r → pr0 pr0 @ pa? → pr1

a → pa0 pr1 @ pd1 → pr2

d → pd0 pa0 @ pa? → pa1

b → pb0 pd0 @ pb1 → pd1

c → qc0 pd1 @ pc0 → pd1

pb0 @ pa? → pb1

T ∶ r → qr0 qr0 @ qd2 → qr1

d → qd0 qr1 @ qc0 → qr1

a → qa0 qd0 @ qa1 → qd1

b → qb0 qd1 @ qa1 → qd2

c → qc0 qa0 @ qa1 → qa1

qa0 @ qb0 → qa1

Figure 2 presents the (accepting) runs of the automata S and T on some curried trees.

Stepwise automata capture exactly the class of regular (unranked) tree lan-
guages [Carme et al. 2004] and they are more succinct than other models of au-
tomata [Martens and Niehren 2007]. Even though other equivalent models of au-
tomata, such as unranked tree automata, are more frequently used in practice, these
can be converted into stepwise tree automata in polynomial time. This means that
algorithms for analyzing stepwise automata provide the same complexity bounds for
unranked tree automata – in particular, all of our complexity results apply to stepwise
tree automata as well as to unranked tree automata. The main advantage of using
stepwise automata in our proofs is due to their ability of capturing in a uniform way
the “cyclic behavior” of a regular tree language (as we will see in Section 5, this cyclic
behavior is defined in terms of strongly connected components of automata).

In the sequel, we will assume that our stepwise tree automata are trimmed, namely,
they contain only states that appear in valid accepting runs. Formally, a stepwise tree
automaton A = (Σ,Q, δ, δ0, F) is trimmed if for every state q ∈ Q, there exist t ∈ TΣ and
an accepting run ρ ofA on t such that ρ(x) = q for some x ∈ nodes(t). Every stepwise tree
automaton can be trimmed in linear time [Comon et al. 2007]. Given that all problems
considered in this paper are at least P-hard, the assumption that all stepwise tree
automata are trimmed is without loss of generality.

As it is usual for word automata, we extend the transition function δ of a stepwise
automaton to trees in TΣ and to contexts in CΣ. More precisely, we define the function
δ∗ ∶ TΣ → 2Q such that q ∈ δ∗(t) iff there exists a run ρ of A on t and ρ(ε) = q. Similarly,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

r

a a

b xxx

c c

b

delete x

r

a a

b c c b

insert y

r

a a

yyy

b c

c b

Fig. 3. Edit operations on unranked trees.

r

a a

b xxx

c c

b

@

@

r a @

@

@

a b @

@

xxx c

c

b

C

delete x

@

@

r a @

@

@

@

a b

c

c

bC

r

a a

b c c b

Fig. 4. Deleting a node in the curry encoding.

we define the function δ∗● ∶ Q × CΣ → 2Q such that q′ ∈ δ∗● (q,C) iff there exists a run ρ
of Aq = (Σ ∪ {●},Q, δ0 ∪ {(●, q)}, δ,Q) on C and ρ(ε) = q′ (intuitively, we simulate some
computation of A on C under the assumption that the placeholder is assigned state q).
In particular, we have δ∗● (q, ●) = {q}. By an abuse of notation, we will denote δ∗ and δ∗●
simply by δ.

4. THE BOUNDED REPAIR PROBLEM FOR TREES
We repair trees by using the standard set of edit operations over nodes [Tai 1979; Bille
2005]. We briefly recall the definitions of the standard edit operations on unranked
trees which are extensions of the edit operations over words. The first operation, called
deletion, removes a distinguished (non-root) node x from a tree t and promotes the
subtrees x as children of its parent. The second operation, called insertion, adds a new
node x in an unranked tree t, with a possible adoption of a list of consecutive children
of the parent of x whose original position immediately follows the position of x. Fig-
ure 3 gives an example of these two operations. The last operation, called relabeling,
modifies the label of a node x to a new label in Σ. These three operations are the stan-
dard edit operations that are used to define the edit-distance between trees (see [Bille
2005] for a survey). We denote by dist(t, t′) the minimum number of edits operations
that are needed for transforming t into t′ given two unranked trees t and t′. Note that
the operation of relabeling a node in an unranked tree, which is sometimes used as a
standard edit operation, is subsumed by the insertion and deletion of nodes. Therefore,
allowing or not the use of the operation of relabeling has an impact on the edit distance
between two trees. However, the bounded repair problem is equivalent following that
the relabeling is allowed or simulated by insertion and deletion operations.

We identify a close correspondence between the two basic edit operations on un-
ranked trees and two operations on the corresponding curry encodings. Because the
operations on unranked trees involve changing the parent of a sequence of consecutive
subtrees (forests), the operations on curry encodings involve moving corresponding
horizontal contexts. Deleting an inner node x in an unranked tree (cf. Figure 4) cor-
responds to deleting the corresponding leaf node x in the curry encoding, identifying

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:11

@

@

r a @

@

@

@

a b

c

c

b

Cr

a a

b c c b

insert y

@

@

r a @

@

@

a @

@

yyy b

c

c

b

C

r

a a

yyy

b c

c b

Fig. 5. Inserting a node in the curry encoding.

the horizontal context C that represents the sequence of children of the deleted node,
and replacing the parent @ of C by C. Note that the context C is uniquely defined in
the curry encoding and always has a parent @ because we apply the deletion operation
to an inner node in the unranked tree. Conversely, inserting a node y in an unranked
tree (cf. Figure 5) corresponds to identifying a context C representing the forest of the
adopted children, placing a new @ node in place of C while attaching C as the right
child of the new node @, and finally, substituting the placeholder of C by the new node
y. Here the context C is also uniquely defined by the sequence of consecutive children
adopted by the inserted node.

We are interested in studying the bounded repairability problem. This problem was
studied for strings by [Benedikt et al. 2013], so we extend their setting from strings
to trees. We consider two finite alphabets Σ and ∆ and regular languages S ⊆ Σ∗ and
T ⊆ ∆∗, called the source and target languages, respectively. Furthermore, we define a
repair strategy as any function from trees in S to trees in T for any tree languages S
and T .

We are now ready to introduce the problem we are mainly interested in:

Definition 4.1. Given two regular tree languages S and T , let

cost(S,T) =def sup
t∈S

min
t′∈T

dist(t, t′).

be the worst-case cost of repairing S into T – note that this can be equally defined as
the minimum of maxt∈S dist(t, f(t)) over all repair strategies f from S to T .

If cost(S,T) is finite, then we say that S is bounded repairable into T , and we write
cost(S,T) < ∞ for short. Intuitively, this is equivalent to saying that there is a repair
strategy f transforming any tree t ∈ S into a tree f(t) ∈ T and having dist(t, f(t))
uniformly bounded by a constant.

The bounded repair problem amounts at deciding, given two regular tree languages
S and T – specified by means of stepwise tree automata or DTDs – whether S is
bounded repairable into T .

Example 3.1 (continued). Consider the two DTDs D and D′ that we introduced
in our running example. For the tree languages specified by D and D′ one can check
L (D) is bounded repairable into L (D′). Figure 6 shows how to repair a tree satisfying
D into one satisfying D′ with five edits: first one removes the d-labeled node under the
root and its b-labeled child, then one adds a new d-labeled node above the two branches
starting with a, finally one adds b-labeled leaves under the r d a a branches. In fact,
similar strategies with edit cost at most five can be used to repair any tree t ∈ L (D)
into a tree t′ ∈ L (D′). In particular, this shows that cost(L (D),L (D′)) <∞.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

r

a

a

ddd

b

a

a

c c c

delete d r

a

a

bbb

a

a

c c c

delete b r

a

a

a

a

c c c

insert d r

ddd

a

a

a

a

c c c

insert b

twice

r

d

a

a

bbb

a

a

bbb

c c c

Fig. 6. Example of how to repair an unranked tree satisfying D into one satisfying D′.

It is easy to verify that the bounded repairability relation cost(S,T) <∞ satisfies the
following key properties, which shall be used later:

(1) Subset-subsumption, i.e. S ⊆ T implies cost(S,T) <∞;
(2) Transitivity, i.e. cost(S,T) <∞ and cost(T,U) <∞ imply cost(S,U) <∞;
(3) Union-compatibility, i.e. cost(S,T) < ∞ and cost(S′, T ′) < ∞ imply cost(S ∪ S′, T ∪

T ′) <∞.

This first property, subset-subsumption, is trivial to prove given that cost(S,T) = 0 iff
S ⊆ T . For the transitivity property, one can easily check that function dist is a metric
over trees and then satisfies the triangle inequality (i.e. dist(t, t′) ≤ dist(t, t′′)+dist(t′′, t′)
for any t, t′, t′′ ∈ TΣ). This implies that dist(t, t′′) ≤ cost(S,T) + cost(T,U) given that
dist(t, t′) ≤ cost(S,T) and dist(t′, t′′) ≤ cost(T,U) for any t ∈ S, t′ ∈ T , and t′′ ∈ U . Thus,
we conclude that cost(S,U) is also bounded and the transitivity property is proved.
Finally, the union-compatibility follows directly from the definition of worst-case cost of
repairing a source into a target language. Indeed, if cost(S,T) <∞ and cost(S′, T ′) <∞,
then cost(S ∪ S′, T ∪ T ′) ≤ max{cost(S,T), cost(S′, T ′)} and we conclude that cost(S ∪
S′, T ∪ T ′) is bounded as well.

5. CHARACTERIZATION OF BOUNDED REPAIRABILITY
In this section we give an effective characterization of the bounded repairability re-
lation between regular tree languages. Similarly to the string setting [Benedikt et al.
2013], this characterization is based on the notion of strongly connected component of
the transition graph of a stepwise automaton. In the string case, a suitable coverability
relation between chains of components is used to characterize bounded repairability.
Because here we work with trees, we need to generalize the notion of coverability to a
relation over the so-called synopsis trees, i.e., full binary trees with nodes labeled by
strongly connected components.

5.1. Components of stepwise automata
Given a stepwise automaton A = (Σ,Q, δ, δ0, F), the transition graph of A is the graph
GA = (Q,Eh ∪Ev), where:

Eh = {(q1, q) ∈ Q ×Q ∣ ∃q2. q ∈ δ(q1, q2)},
Ev = {(q2, q) ∈ Q ×Q ∣ ∃q1. q ∈ δ(q1, q2)}.

We call the edges in Ev vertical and the edges in Eh horizontal. Note that an edge may
be both vertical and horizontal. As an example, Figure 7 depicts the transition graphs
of the automata S and T of Example 3.1 (dashed arrows represent horizontal edges,
solid arrows represent vertical edges).

Recall that a strongly connected component of a graph (or simply a component) is
a maximal set of nodes X such that every two nodes x, y in X are connected by a
direct path. By SCC(A) we denote the set of all strongly connected components in the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:13

GS ∶ pr0 pr1 pr2

pd0 pd1

pb0 pb1 pc0

pa0 pa1

GT ∶ qr0 qr1

qd0 qd1 qd2 qc0

qa0 qa1

qb0

Fig. 7. Transition graphs (dashed and solid arrows represent horizontal and vertical edges, respectively).

transition graph of A. In a way similar to the string setting, we associate with each
component X ∈ SCC(A) the language L (A ∣ X) of contexts that are realizable within
X:

L (A ∣X) = {C ∈ CΣ ∣ ∃p, q ∈X. q ∈ δ(p,C)}.

For example, the contexts realizable within the component {pd1} of the automaton of
our running example (see also Figure 7) are all of the form

@

⋱

@

● c

⋱

c

Because editing operations on unranked trees correspond to operations involving hor-
izontal contexts in the curry encodings, we identify strongly connected components
of an automaton that yield only horizontal contexts. A proper manipulation of those
components translates to performing a fixed number of editing operations regardless
of the contexts such components define, which is the basis of characterizing bounded
repairability. Formally, a component X ∈ SCC(A) is horizontal iff L (A ∣ X) consists
of horizontal contexts only. Similarly, we say that X is trivial iff it realizes the empty
context only, i.e., L (A ∣X) = {●}. Note that trivial components are horizontal.

As an example, consider again the transition graphs of Figure 7. All components
except {pd1}, {pa1}, {qr1}, and {qa1} are trivial. The components {pd1} and {qr1} are non-
trivial horizontal, since they both realize the contexts ●, ●@c, (●@c)@c, . . . The compo-
nents {pa1} and {qa1} are non-horizontal, since they both realize the contexts ●, a@●,
a@(a@●), . . .

5.2. Synopsis trees
We now introduce a suitable structure that eases the characterization of bounded re-
pairability and that we call synopsis tree. The structure is a generalization of the
chain of components that is used in Theorem 4.1 [Benedikt et al. 2013] to characterize
bounded repairability between string languages. Formally, a synopsis tree of an au-
tomaton A is any full binary tree whose nodes are labeled with elements of SCC(A).
The language ⟦σ⟧A of curried trees that is induced by a synopsis tree σ of A is defined
recursively as follows:

⟦X⟧A = {C ○ a ∣ C ∈ L (A ∣X), a ∈ Σ}
⟦X(σ1, σ2)⟧A = {C ○ (t1@t2) ∣ C ∈ L (A ∣X), t1 ∈ ⟦σ1⟧A, t2 ∈ ⟦σ2⟧A}

with X ∈ SCC(A). Intuitively, all trees in the language ⟦σ⟧A are obtained by combining,
in a suitable order that is compatible with the structure of σ, some contexts which are
realizable within the components of σ. Figure 8 contains two synopsis trees σ and τ ,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

σ ∶ {pr2}

{pr1}

{pr0} {pa1}

{pa0} {pa0}

{pd1}

{pd0} {pb1}

{pb0} {pa1}

{pa0} {pa0}

τ ∶ {qr1}

{qr1}

{qr0} {qd2}

{qd1}

{qd0} {qa1}

{qa0} {qb0}

{qa1}

{qa0} {qb0}

{qc0}

Fig. 8. Synopsis trees for stepwise tree automata S and T .

respectively for the source automaton S and the target automaton T of Example 3.1.
An example of tree induced by the synopsis tree on the left is that of Figure 1.

Next, we identify a family of synopsis trees that captures “closely enough” the lan-
guage recognized by an automaton.

Definition 5.1. A primitive synopsis tree of an automaton S = (Σ,Q, δ, δ0, F) is a
synopsis tree σ of S such that:

(1) σ respects the transition function of S, namely, for all nodes x, x ⋅ 1, and x ⋅ 2 in σ,
there exist some states q ∈ σ(x), q1 ∈ σ(x ⋅ 1), and q2 ∈ σ(x ⋅ 2) such that q ∈ δ(q1, q2);

(2) every internal node of σ has label different from the labels of its children, namely,
for all nodes x, x ⋅ 1, and x ⋅ 2 in σ, σ(x ⋅ 1) ≠ σ(x) ≠ σ(x ⋅ 2).

PST(S) denotes the set of all primitive synopsis trees of S.

We observe that the second property stated in Definition 5.1 is equivalent to asking
that every component appears at most once in every path of a primitive synopsis tree.

As an example, the tree σ depicted to the left of Figure 8 is a primitive synopsis
tree, and it corresponds to the run on the left-hand side of Figure 2 of the automaton
S of Example 3.1. On the other hand, the synopsis tree τ depicted to the right is not
primitive.

The idea underlying the notion of primitive synopsis tree is to capture the “cyclic be-
havior” of the components of the source automaton. This cyclic behavior has to be taken
into account in the characterization of bounded repairability because it could generate
arbitrary large fragments of trees that cannot be edited with uniformly bounded cost.
Moreover, the use of primitive synopsis trees as a representation of the source language
L (S) is sound, in the sense that L (S) is contained in the union of the languages in-
duced by primitive synopsis trees:

LEMMA 5.2. For every stepwise tree automaton S, we have L (S) ⊆ ⋃σ∈PST(S) ⟦σ⟧S .

Before entering the details of the proof of Lemma 5.2, we illustrate the main ideas
on the example tree t from Figure 1 accepted by the automaton S from Example 3.1.
We use the accepting run of S on t (cf. Figure 2), and in particular the transitions in it
that induce a change of component along both successors, to decompose t into a binary
tree structure, where each node represents a context realizable by some component
of S. We present this decomposition in Figure 9, where for a better visualization we
annotate the states not on the nodes but on the edges above them (this requires adding
a virtual edge entering the root).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:15

@

@

r @

a a @

@

@

@

d @

b @

a @

a a

c

c

c

p
r

2

p
r

1

p
r

0

p a
1

p
a

0

p a
0

p d
1

p
d

1

p
d

1

p
d

1

p
d

0

p b
1

p
b

0

p a
1

p
a

0

p a
1

p
a

0

p a
0

p c
0

p c
0

p c
0

Fig. 9. Decomposition of a curry tree into contexts.

PROOF OF LEMMA 5.2. Fix a curried tree t ∈ L (S) and an accepting run ρ of S
on t. We need to construct a primitive synopsis tree σ such that t ∈ ⟦σ⟧S . Recall that
a synopsis tree is a tree whose nodes are labeled with strongly connected components
of S. To construct σ, we first decompose t into pieces: this will result in a tree-shaped
arrangement of contexts, which we call context decomposition of t. We then show how
to turn the context decomposition of t into the desired primitive synopsis tree.

Formally, we represent a context decomposition of t as a subset D of the nodes of t
satisfying the following conditions:

(1) D contains the root of t,
(2) for every node x in D, either x is a leaf of t or there is a descendant y of x in t such

that (i) the states ρ(x) and ρ(y) belong to the same strongly connected component
of S, (ii) both successors y ⋅ 1 and y ⋅ 2 belong to D, and (iii) for every node z ∈D, if z
is a proper descendant of x, then z is a proper descendant of y too.

Note that the node-to-child relation of t induces an analogous structure on any set D
of the above form. In particular, we can think of a context decomposition D as a full
binary tree. We further associate with each internal node x of D the context D(x) that
is obtained by selecting the portion of the tree t that lies between x and the unique
node y such that y ⋅ 1 and y ⋅ 2 are children of x in D – the node that corresponds to y in
the resulting context is labeled with the placeholder ●. The flattening ⟦D⟧ of a context
decomposition D is the language of trees that is inductively defined as follows:

⟦D⟧ = Σ if D has a single node

⟦D⟧ = {C0(t1@t2) ∣ t1 ∈ ⟦D1⟧, t2 ∈ ⟦D2⟧} if D has more than one node

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

where, in the second line, C0 is the context associated with the root of D and D1 and
D2 are the subtrees of D (D1 and D2 can be seen as context decompositions of two
disjoints subtrees of t). It is easy to see that t ∈ ⟦D⟧ for every context decomposition D
of t. We also associate with each decomposition D of t an induced synopsis tree σD by
replacing every context C labeling an internal node x of D with the strongly connected
component X of the state ρ(x) (note that C ∈ L (S ∣X)).

Due to the similarity between the definition of the flattening ⟦D⟧ and the definition
of the language ⟦σD⟧S induced by the synopsis tree σD, we have that ⟦D⟧ ⊆ ⟦σD⟧S ,
whence t ∈ ⟦σD⟧. However, given a generic context decomposition D, there is no guar-
antee that σD is a primitive synopsis tree – in particular, it may happen that two con-
secutive nodes in σD are labeled with the same component. To overcome this problem,
below we show how to construct a specific context decomposition D of t that satisfies
the following additional property:

(3) if x is an internal node of D and y ⋅ 1 and y ⋅ 2 are the two immediate successors of
x in D, then the component of ρ(x) is different from the components of ρ(y ⋅ 1) and
ρ(y ⋅ 2).

Clearly, the additional property suffices to conclude that σD is a primitive synopsis
tree, and thus to prove the lemma.

To construct a context decomposition D of t that satisfies the properties (1)–(3), we
follow maximal paths within the same component in the run ρ. More precisely, let x be
the root of t and letX be the component of ρ(x). We distinguish two cases depending on
whether or not there is a leaf y of ρ whose state belongs to the component X. If there is
such a leaf y, then we define the context decomposition D of t to be the set containing
only the two nodes x and y. In this case, the corresponding synopsis tree σD is clearly
primitive. Otherwise, if all the states associated with the leaves of ρ are outside X,
we choose any maximal path of ρ that starts in x and visits only states within the
component X. Let y be the last node of this path. Clearly, y is not a leaf and both
states ρ(y ⋅ 1) and ρ(y ⋅ 2) are outside X. By exploiting a simple inductive argument,
we can assume that the two subtrees of t rooted at nodes y ⋅ 1 and y ⋅ 2 admit some
context decompositions D1 and D2 satisfying (1)–(3). We can thus define our context
decomposition D of t to be the set {x} ∪D1 ∪D2. It is routine to verify that D satisfies
the properties (1)–(3) and induces a primitive synopsis tree σD.

Summing up, we constructed from t and ρ a suitable context decomposition D and
from this we derived the existence of a primitive synopsis tree σD such that t ∈ ⟦D⟧ ⊆
⟦σD⟧S . This concludes the proof of the lemma.

We also observe the following:

Remark 5.3. The height of a primitive synopsis tree of the source automaton S is
bounded by the number of components in GS and hence by the number of states of S.
Consequently, PST(S) is a finite set and can be represented in exponential space with
respect to the size of S.

In order to represent the target language and the possible edited trees, one needs
a relaxed version of primitive synopsis tree, called basic synopsis tree, which enforces
only the first condition of Definition 5.1. Basic synopsis trees are the analogs of chains
of components over dag∗(T) that were used in Theorem 4.1 [Benedikt et al. 2013] to
characterize bounded repairability between string languages.

Definition 5.4. A basic synopsis tree of an automaton T is a synopsis tree τ of T
that respects the transition function of T (cf. first item of Definition 5.1). We denote by
BST(T) the set of all basic synopsis trees of T .

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:17

For example, the tree τ in Figure 8 is a basic synopsis tree that respects the transi-
tions of the run of the automaton T depicted in the right-hand side of Figure 2.

Differently from primitive synopsis trees, basic synopsis trees may contain repeated
occurrences of the same component. This implies that the set BST(T) of all basic syn-
opsis trees of T is potentially infinite. However, this set can be finitely presented by
means of a deterministic binary bottom-up tree automaton of size polynomial in the
size of T .

The following lemma shows that the language induced by a basic synopsis tree of T
is bounded repairable into the language L (T).

LEMMA 5.5. For every stepwise tree automaton T = (∆,Q, δ, δ0, F) and every τ ∈
BST(T), we have

cost(⟦τ⟧T ,L (T)) ≤ (4∣τ ∣ + 1) ⋅ 2∣Q∣

where ⟦τ⟧T is now seen as a language of unranked trees. In particular,
cost(⟦τ⟧T ,L (T)) <∞.

PROOF. We begin by explaining the main ingredients of the proof. Any tree t ∈ ⟦τ⟧T
can be seen as a composition of contexts, precisely, a context Cx for each node x in
τ , with Cx ∈ L (T ∣ τ(x)). Every such context can be decorated by a partial run of
T that justifies the fact that the context belongs to the language L (T ∣ τ(x)). These
partial runs can be used to construct a complete run of T , but only after the insertion
of a small number of small pieces of runs, which provide the necessary connections
between the partial run of a context Cx and the partial runs of the successor contexts
Cx⋅1 and Cx⋅2. The existence of these pieces is guaranteed by the fact that the synopsis
tree τ respects the transition function of T and by the definition of strongly connected
component. We now turn to a more detailed proof.

For every state q of T , we define the automaton T q = (∆,Q, δ, δ0,{q}) that recognizes
trees via runs that end with state q at the root. We also define `p,q = min{∣C ∣ ∣ q ∈ δ(p,C)}
for each pair of states p, q, with q reachable from p in GT . We take the maximum of all
these values, i.e. ` = maxp,q∈Q `p,q, and we observe that ` ≤ 2∣Q∣. We can associate with
each pair p, q ∈ Q such that q is reachable from p a context Cp,q of size at most ` such
that q ∈ δ(p,Cp,q). Below, we exploit an induction on the size of a basic synopsis tree τ
to prove that, for all states q ∈ τ(ε),

cost(⟦τ⟧T ,L (T q)) ≤ 4∣τ ∣ ⋅ `
Note that to get from the above statement to the claim of the lemma it is sufficient to
recall that T is trimmed and hence any tree in L (T q) can be repaired into L (T) by
simply inserting a context Cq,q′ , where q′ is some state from F .

To prove the statement in the base case τ = X, we consider a generic tree t ∈ ⟦X⟧A
and we observe that t = C ○ a for some context C ∈ L (T ∣ X) and some letter a ∈ ∆.
Clearly, there exist p′, q′ ∈ X such that q′ ∈ δ(p′,C). Since T is trimmed, there exist a
symbol b ∈ ∆ and a state q0 ∈ δ0(b) such that p′ is reachable from q0. We define the tree

t′ = Cq′,q ○C ○Cq0,p′ ○ b
and we observe that t′ can be obtained from t (= C ○a) by replacing the leaf node a with
the tree Cq0,p′ ○ b and by adding the context Cq′,q at the top. Clearly, t′ ∈ L (T q) and the
overall cost of transforming t to t′ is at most 4`.

Now, for the inductive step, suppose that τ = X(τ1, τ2) and consider t ∈ ⟦X(τ1, τ2)⟧T .
By definition, we have t = C ○ (t1 @ t2) for some context C ∈ L (T ∣ X), and some trees
t1 ∈ ⟦τ1⟧T and t2 ∈ ⟦τ2⟧T . Further let p′, q′ ∈X be two states such that q′ ∈ δ(p′,C). Since
the synopsis tree τ respects the transition function of T , we know that there exist p ∈X,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

σ ∶ {pr2}

{pr1}

{pr0} {pa1}

{pa0} {pa0}

{pd1}

{pd0} {pb1}

{pb0} {pa1}

{pa0} {pa0}

τ ∶ {qr1}

{qr1}

{qr0} {qd2}

{qd1}

{qd0} {qa1}

{qa0} {qb0}

{qa1}

{qa0} {qb0}

{qc0}

Fig. 10. Covering of a primitive synopsis tree by a basic synopsis tree.

p1 ∈ τ1(ε), and p2 ∈ τ2(ε) such that p ∈ δ(p1, p2). By inductive hypothesis, there exists
t′1 ∈ L (T p1) (resp., t′2 ∈ L (T p2)) such that dist(t1, t′1) ≤ 4∣τ1∣ ⋅ ` (resp., dist(t1, t′1) ≤ 4∣τ1∣ ⋅ `).
We can then define

t′ = Cq′,q ○C ○Cp,p′ ○ (t′1 @ t′2)
and claim that t′ ∈ L (()T q). Moreover, the above tree t′ can be obtained from the
original tree t = C ○ (t1 @ t2) by first transforming the subtrees t1 and t2 into t′1 and t′2,
respectively, then inserting the context Cp,p′ between t′1 @ t′2 and C, and finally adding
the context Cq′,q at the top. Overall, this transformation costs at most 4∣τ1∣ ⋅ `+ 4∣τ2∣ ⋅ `+
2` ≤ 4∣τ ∣ ⋅ `.

5.3. Coverings
In the previous section, we introduced the concepts of primitive and basic synopsis
trees and we showed that they correspond roughly (i.e. up to boundedly many edits)
to trees accepted by the source and target automata, respectively. The remaining part
of the puzzle is to relate each primitive synopsis tree of the source automaton S to
some basic synopsis tree of the target automaton T , so as to characterize bounded re-
pairability from L (S) to L (T). This is accomplished by the notion of covering between
synopsis trees.

Definition 5.6. Given two stepwise tree automata S and T and two synopsis trees
σ of S and τ of T , we say that σ is covered by τ iff there is an injective mapping λ from
non-trivial nodes of σ to non-trivial nodes of τ such that:

(1) λ maps components in a way that is compatible with the languages of contexts,
that is, L (S ∣ σ(x)) ⊆ L (T ∣ τ(λ(x))) for every non-trivial node x of σ;

(2) λ preserves the post-order of non-trivial nodes, that is, x ≼postσ y iff λ(x) ≼postτ λ(y)
for any two non-trivial nodes x, y of σ;

(3) λ preserves the ancestorship of non-horizontal nodes, that is, x ≼ancσ y iff λ(x) ≼ancτ
λ(y) for every non-horizontal node x of σ and every non-trivial node y of σ.

We call the mapping λ a covering from σ to τ and we denote it shortly by λ ∶ σ ↪ τ .

Figure 10 presents a covering of a primitive synopsis tree σ of S by a basic synopsis
tree τ of T , where the square boxes represent the non-trivial nodes, and have double
borders when the component is non-horizontal.

We are now able to state the main characterization theorem of the paper:

THEOREM 5.7. Given two stepwise automata S and T , the language L (S) is
bounded repairable into the language L (T) iff every primitive synopsis tree σ of S

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:19

is covered by some basic synopsis tree τ of T , namely:

cost(S,T) <∞ iff ∀ τ ∈ PST(S). ∃σ ∈ BST(T). τ ↪ σ

The proof of the above result is given in Section 6. Here, we briefly explain the main
ideas underlying the definition of covering. We begin by observing that a reasonable
strategy for repairing S into T with uniformly bounded cost applies the edit operations
only at the “junctions” of the contexts realized by the non-trivial components. Indeed,
since non-trivial components of S can realize arbitrary large repetitions of the same
context, we have that either these repetitions do not need any editing at all, or they
need an arbitrary large amount of editing. This observation gives an intuitive account
for the first condition of Definition 5.6, which enforces containment relationships be-
tween languages of contexts realizable within non-trivial components.

As for the other two conditions, it is worth looking at the effect of an edit operation
on the curry encoding of an unranked tree t ∈ L (S). Let us consider a node x in t
that is about to be deleted by the editing. There is a unique way to represent the
curry encoding of t together with the distinguished node x as an expression of the form
C○(t′ @ (C ′○a)), where a is the label of x and C ′ is a horizontal context representing the
forest of subtrees under x. The result of the deletion of node x from t is encoded by the
curried tree C ○C ′ ○ t′ (see Figure 4 for an example). Note that this operation does not
allow the deletion of the leftmost leaf node in the curried tree (this would correspond to
deleting the root node in an unranked tree, an operation that is typically prohibited).
The operation of inserting a new node y in an unranked tree t can be described in a
symmetric way via curry encodings and transpositions of horizontal contexts, that is,
given an unranked tree twith curry encoding C○C ′○t′, where C ′ is a horizontal context,
the curried tree C ○ (t′@(C ′ ○ a)) represents the unranked tree that results from the
insertion of a new a-labeled node y in t having as children the forest represented by C ′.

We now observe that the transformations on curried trees that we just described
above satisfy two crucial properties: (i) they preserve the post-order of the nodes and
(ii) they preserve the ancestorship of non-horizontal contexts (e.g., the context C of
Figure 4) with their descendants. These properties are precisely captured by the last
two conditions of Definition 5.6.

We conclude the section by mentioning a strengthening of the “if” direction of The-
orem 5.7, which gives an upper bound for the cost of an optimal repair strategy from
L (S) to L (T):

PROPOSITION 5.8. For all automata S and T , if every primitive synopsis tree of S
is covered by some basic synopsis tree of T , then

cost(L (S),L (T)) ∈ O(∣SCC(T)∣ ⋅ 2∣Q∣+∣Q′∣)

where Q and Q′ are the set of states of S and T , respectively.

6. PROOF OF THE MAIN CHARACTERIZATION
The following subsections are devoted to proving the two directions of the characteri-
zation.

6.1. From covering to repair
We begin with the proof of the “if” direction of Theorem 5.7. For the rest of the section,
we fix two stepwise automata S = (Σ,Q, δ, δ0, F) and T = (∆,Q′, δ′, δ′0, F

′) recognizing
the source and the target languages, respectively. We then assume that every primitive
synopsis tree of S is covered by some basic synopsis tree of T , and we show how to
construct a repair strategy from L (S) to L (T) with uniformly bounded cost. The proof

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

basically follows from a series of containments and bounded repairability relations
between languages, which can be summarized as follows:

L (S) ⊆ ⋃σ∈PST(S) ⟦σ⟧S
´¹¹¸¹¹¶

Lemma 5.2

⊑ ⋃τ∈BST(T) ⟦τ⟧T ⊑ L (T)
´¹¹¹¸¹¹¹¶

Lemma 5.5

where ⊑ denotes the bounded repairability relation. The intermediate bounded re-
pairability relation in the above chain is established by the following lemma:

LEMMA 6.1. For every synopsis tree σ of S and every synopsis tree τ of T , if σ is
covered by τ , then cost(⟦τ⟧S , ⟦σ⟧T) ≤ 4∣τ ∣ + 4∣σ∣.

The proof of the above lemma is quite technical and will take the entire subsection.
Before entering the details, we briefly discuss how the “if” direction of Theorem 5.7

follows from it. By Lemma 5.2, the source language L (S) is contained in the union
of the languages ⟦σ⟧S induced by all primitive synopsis trees σ ∈ PST(S). By the hy-
pothesis, each of these synopsis trees is covered by some basic synopsis tree τ of the
target automaton T . Thus, by Lemma 6.1, each language ⟦σ⟧S can be repaired with
uniformly bounded cost into the language ⟦τ⟧T , for some τ ∈ BST(T). By Lemma 5.5
each language ⟦τ⟧T can be in turn repaired with uniformly bounded cost into the tar-
get language L (T). The result now follows from the fact that there are only finitely
many primitive synopsis trees and the fact that bounded repairability is a transitive
relation that is moreover preserved by finite unions.

The rest of the subsection is devoted to the proof of Lemma 6.1. We begin by ex-
tending slightly the definition of synopsis tree and by allowing the use of special nodes
labeled with ε that represents dummy trivial components. The semantics is extended
in the natural way by letting L (A ∣ ε) = {●} (for any stepwise automaton A). Because
all trivial components have the same associated language {●}, we shall often identify
trivial components of automata with the dummy component ε.

For a technical reason (see the proof of Lemma 6.3 below), we also need to assume
that the alphabet Σ of the source automaton S is contained in the alphabet ∆ of the tar-
get automaton T – note that this condition can be enforced without loss of generality,
that is, without changing the recognized languages.

The first ingredient of the proof shows how to “interpolate” two synopsis trees σ and
τ by a third synopsis tree θ of S in such a way that:

— θ has the same labels (i.e., components) as σ on the non-trivial nodes and it covers
σ via a bijection between non-trivial nodes of σ and non-trivial nodes of θ that maps
any non-trivial node of σ with label X ∈ SCC(S) to a non-trivial node of θ with the
same label X (we say that σ is strongly covered by θ and denote this by σ ↪↠ θ);

— θ has the same domain (i.e., set of nodes) as τ and it is covered by τ via the identity
function between non-trivial nodes (we say that θ is embedded into τ and denote this
by θ ↪⇌ τ).

It is not difficult to show that such an interpolating synopsis tree θ exists:

LEMMA 6.2. We have that

σ ↪ τ implies ∃ θ. σ ↪↠ θ ↪⇌ τ

that is, if σ is covered by τ , then there is a synopsis tree θ that strongly covers σ and that
is embedded in τ .

PROOF. Let λ be a covering function from σ to τ and recall that λ is injective. Let
range(λ) denote the set of nodes of τ of the form λ(x), for some x ∈ nodes(σ). Moreover,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:21

for every y ∈ range(λ), let λ−1(y) denote the unique node x of σ such that λ(x) = y. The
synopsis tree θ has the same domain as τ and the same labels as σ, that is, for all
y ∈ nodes(θ) = nodes(τ),

θ(y) =
⎧⎪⎪⎨⎪⎪⎩

σ(λ−1(y)) if y ∈ range(λ),
ε otherwise.

Note that λ can be seen as a bijection between the non-trivial nodes of σ and the non-
trivial nodes of θ (the latter are precisely the nodes of τ that belong to range(λ)). It
follows that σ is strongly covered by θ via the function λ and that θ is embedded into τ
via the identity function.

A first advantage of considering an interpolating synopsis tree θ which is embedded
into τ is that θ and τ have the same structure. As a consequence, we can claim that the
language induced by θ is contained in (not just bounded repairable into) the language
induced by τ :

LEMMA 6.3. If θ is a synopsis tree of S, τ is a synopsis tree of T , and θ is embedded
into τ , then ⟦θ⟧S ⊆ ⟦τ⟧T .

PROOF. The proof is by structural induction on θ (or, equally, τ). In the base case,
where θ consists of a single node x, we consider the components θ(x) =X and τ(x) = Y .
If X is a trivial component, then, since the covering function from θ to τ is a bijection
between non-trivial nodes, we deduce that Y is also a trivial component and hence
L (S ∣ X) = L (T ∣ Y) = {●}. Now, recall that we assumed that the source alphabet Σ
is contained in the target alphabet ∆. From this it follows that ⟦θ⟧S = Σ ⊆ ∆ = ⟦τ⟧T .
Otherwise, if X is a non-trivial component, then from the fact that θ is covered by τ ,
we obtain L (S ∣X) ⊆ L (T ∣ Y). As before we conclude that ⟦θ⟧S ⊆ ⟦τ⟧T .

For the inductive step, we suppose that θ = X(θ1, θ2) and τ = Y (τ1, τ2). We consider
a generic tree t ∈ ⟦θ⟧S . By definition, we can write t = C ○ (t1 @ t2) for some context
C ∈ L (S ∣ X) and some trees t1 ∈ ⟦θ1⟧S and t2 ∈ ⟦θ2⟧S . We know from the inductive
hypothesis that ti ∈ ⟦τi⟧T for both i = 1 and i = 2. If X is a trivial component, then
C is necessarily the trivial context, which is also realizable within the component Y .
Otherwise, if X is a non-trivial component, then it must be mapped to the component
Y by the embedding function, and hence C ∈ L (T ∣ Y). In both cases we conclude that
t ∈ ⟦τ⟧T .

Now, recall from Section 4 that the bounded repairability relation is transitive and
it generalizes containment. In particular, the previous results reduce the statement
of Lemma 6.1 to the problem of proving that ⟦σ⟧S is bounded repairable into ⟦θ⟧S .
In proving the latter statement, we can take advantage of the fact that σ is strongly
covered by θ. In particular, we observe that the strong coverability relation ↪↠ is an
equivalence: it is indeed reflexive, symmetric, and transitive (the last two properties
follow from the fact that the function that witnesses strong coverability is a bijection
between non-trivial nodes that preserves components).

In order to derive bounded repairability from strong coverability, we associate with
each synopsis tree σ of S a suitable normal form σ∗ that can be used as a canonical
representative of the equivalence class of σ induced by the strong coverability relation.
We will then prove that ⟦σ⟧S is bounded repairable into ⟦θ⟧S first by repairing ⟦σ⟧S into
⟦σ∗⟧S and then by repairing ⟦θ∗⟧S (= ⟦σ∗⟧S) into ⟦θ⟧S (recall that σ and θ strongly cover
each other and hence σ∗ = θ∗ by canonicity of the normal form). The repair strategy
that witnesses bounded repairability between ⟦σ⟧S and ⟦σ∗⟧S (resp., ⟦θ∗⟧S and ⟦θ⟧S)
can be read off the sequence of generic editing operations that takes σ to its normal
form σ∗ (resp., θ to its normal form θ∗).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

In the sequel we only manipulate synopsis trees of the source automaton S. For this
reason, we can omit the subscript S from notations like ⟦σ⟧S . We describe below the
structure of a synopsis tree in normal form.

Definition 6.4. A synopsis tree σ is in normal form if one of the following cases
holds:

(1) σ = ε, namely, σ consists of a single node labeled with a trivial component,
(2) σ =X(α, ε), where X is a non-trivial horizontal component and α is a synopsis tree

in normal form,
(3) σ = ε(α,X(β, ε)), where X is a non-horizontal component and α,β are synopsis

trees in normal form.

We observe that the root of a synopsis tree in normal form is a horizontal (possibly
trivial) node and its left sub-tree is also in normal form. In particular, this means
that all components along the leftmost branch of a synopsis tree in normal form are
horizontal.

The following lemma shows that synopsis trees in normal form can be used as canon-
ical representatives of the equivalence classes induced by the strong coverability rela-
tion.

LEMMA 6.5. If σ and σ′ are two synopsis trees in normal form that strongly cover
each other, then σ and σ′ are isomorphic.

PROOF. Let σ and σ′ be two synopsis trees in normal form and let λ be a bijection
between the non-trivial nodes of σ and the non-trivial nodes of σ′ that witnesses the
fact that σ ↪↠ σ′. In the following, we often identify, for the sake of simplicity, the nodes
of the synopsis trees σ and σ′ with their labels. The proof is by structural induction and
case analysis.

For the base case, suppose that σ = ε. Since σ contains only trivial nodes and λ
is surjective over non-trivial nodes, σ′ contains only trivial nodes too. Since σ′ is in
normal form, it follows that σ′ = ε.

For the inductive step, we distinguish two cases depending on whether σ is of
the form X(σ1, ε), where X being a non-trivial horizontal component, or of the form
ε(σ1,X(σ2, ε)), with X being a non-horizontal component.

In the former case, i.e. σ = X(σ1, ε), we recall that the mapping λ is a bijection
between non-trivial nodes that preserves the post-order. Because the root X of σ is
non-trivial and is the maximal element with respect to the post-order relation, it must
be mapped by λ to the root Y of τ . Moreover, since λ preserves the labels of non-
trivial nodes, we have that Y = λ(X) = X. In particular, Y is a non-trivial horizontal
component. Since σ′ is in normal form, it follows that its right sub-tree is ε and hence λ
maps the non-trivial nodes of the left sub-tree σ1 of σ to the non-trivial nodes of the left
sub-tree σ′1 of σ′. Finally, since both σ1 and σ′1 are synopsis trees in normal form, we
obtain from the inductive hypothesis that σ1 = σ′1 and hence σ =X(σ1, ε) = Y (σ′1, ε) = σ′.

We consider the second case, i.e. σ = ε(σ1,X(σ2, ε)), where X is a non-horizontal
component. For the sake of contradiction, suppose that the root Y of σ′ is a non-trivial
component. Since Y is the last non-trivial node in the post-order traversal of σ′ and λ
preserves the post-order of non-trivial nodes, the pre-image λ−1(Y) in σ would consist
of the last non-trivial node in the post-order traversal of σ′, whence λ−1(Y) = X. How-
ever, since X is a non-horizontal component, this would be against the hypothesis that
σ′ is in normal form (recall that the root of any synopsis tree in normal form is always
a horizontal component). Knowing that Y is a trivial node and σ′ is in normal form, we
obtain Y = ε and hence σ′ is of the form ε(σ′1, Z(σ′2, ε)), for some non-horizontal compo-
nent Z and two synopsis trees σ′1 and σ′2 in normal form. Towards a conclusion, observe

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:23

X

α H1

β1

Hk

βk
ε

. . .

promotion

X

εH1

β1

Hk

βk
α

. . .
α

demotion
ε

ε
α

ε

α
ε

reduction
α

Fig. 11. Editing operations on synopsis trees.

that, in the post-order traversal of σ, the non-trivial nodes of σ1 precede the non-trivial
nodes of σ2, and the latter are followed by the non-horizontal node X. Since λ is a bi-
jection that preserves the post-order of non-trivial nodes and the ancestorship relation
with non-horizontal nodes, we conclude that λ(X) = Z and that the synopsis trees σ1

and σ′1 (resp., σ2 and σ′2) strongly cover each other. Using the inductive hypothesis, we
finally conclude that σ = ε(σ1,X(σ2, ε)) = ε(σ′1, Z(σ′2, ε)) = σ′.

Thanks to Lemma 6.5 we can define the normal form σ∗ of a synopsis tree σ as the
unique synopsis tree that is in normal form and that strongly covers σ, provided that
this tree exists.

Our next goal is to prove that the normal form σ∗ of σ indeed exists, and that it
can be attained by a finite sequence of generic editing operations on synopsis trees.
These operations are called promotion, demotion, and reduction, and are presented in
Figure 11. There, ε represents a trivial component, X represents an arbitrary com-
ponent, H1, . . . ,Hk represent horizontal (possibly trivial) components, and α,β1, . . . , βk
represent arbitrary synopsis trees. Note that the figure describes the case where pro-
motion, demotion, and reduction operations are applied at the root of a synopsis tree –
in general, these operations can be applied to any sub-tree of a synopsis tree. We write
σ →∗

op σ
′ whenever σ′ can be obtained from σ by applying a finite sequence of promo-

tion, demotion, and reduction operations. In order to give further intuition about these
operations, we remark an analogy between the operations of promotion, depicted in
Figure 11, and deletion, depicted in Figure 4 (a similar correspondence holds between
the operations of demotion and insertion of a new root). In this case, the root X of the
synopsis tree is acting as the context C of the curried tree, the sub-tree α is acting as
the curried sub-tree t′, and the sub-tree rooted at H1 is acting as the horizontal context
C ′.

Notice that the editing operations on synopsis trees that we just described preserve
the post-order of non-trivial nodes and the ancestorship of non-horizontal nodes. From
this it follows that they also preserve the strong coverability relation. The following
lemma shows that the normal form of a synopsis tree exists and can be obtained via a
sequence of promotion, demotion, and reduction operations:

LEMMA 6.6. For every synopsis tree σ, there is σ∗ in normal form such that σ →∗
op σ

∗.
Moreover, the number of operations needed to transform σ into σ∗ is bounded by 2∣σ∣.

PROOF. The proof goes again by a structural induction on the synopsis tree σ. Intu-
itively, we first normalize the left and right sub-trees of σ separately using induction.
Then we complete the normalization process by applying a suitable series of operations
on the basis of the component at the root of σ: if this component is non-horizontal, then
we apply a promotion followed by a demotion; if it is horizontal and non-trivial, then

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

we only apply a promotion operation; if it is trivial, then we apply a promotion followed
by a reduction operation.

We can assume without loss of generality that all leaves in the synopsis tree σ are
trivial, hence labeled by ε (indeed, we can append ε-labeled nodes to every leaf of σ
without changing its equivalence class). This assumption reduces the base case to the
situation where the synopsis tree σ consists of a single ε-labeled node. In this case, the
synopsis tree is already in normal form and hence the lemma is trivially satisfied by
letting σ∗ = ε = σ.

For the inductive step, we assume that σ = X(α,β). First, we transform the sub-
trees α,β of σ into their corresponding normal forms α∗, β∗ (this can be done since, by
inductive hypothesis, α →∗

op α
∗ and β →∗

op β
∗). We consider the intermediate synopsis

tree that we just obtained:

σ′ = X(α∗, β∗).
Since the right sub-tree β∗ is in normal form, its leftmost branch consists of horizontal
components only. We can thus write:

σ′ = X(α∗, H1(. . .Hk(ε, βk), . . . , β1)),
for some horizontal (possibly trivial) components H1, . . . ,Hk and some synopsis trees
β1, . . . , βk. We can then perform a promotion operation at the root of σ′ and obtain the
synopsis tree

σ′′ = X(H1(. . .Hk(α∗, βk), . . . , β1), ε).
Using a simple induction on i = k, . . . ,1 and the fact that the sub-trees
Hi(. . .Hk(ε, βk), . . . , β1) of β∗ are in normal form, one can easily verify that the sub-
trees Hi(. . .Hk(α∗, βk), . . . , β1) of σ′′ are also in normal form. In particular, this shows
that the left sub-tree of σ′′ is in normal form.

We now distinguish a few cases depending on whether the component X is horizon-
tal, trivial, or non-horizontal:

(1) If the component X is horizontal and non-trivial, then σ′′ is already in normal form
and we can simply let σ′′ = σ∗.

(2) If the component X is trivial, then we “lift” the left sub-tree of σ′′ via a reduction
operation. This results in a synopsis tree σ∗ = H1(. . .Hk(α∗, βk), . . . , β1) in normal
form.

(3) If the component X is non-horizontal, then we apply a demotion operation to σ′′ so
as to obtain the synopsis tree

σ∗ = ε(ε,X(H1(. . .Hk(α∗, βk), . . . , β1), ε).
We observe that both sub-trees ε and H1(. . .Hk(α∗, βk), . . . , β1) are in normal form.
Moreover, since X is non-horizontal, we know that σ∗ is also in normal form.

It remains to prove the upper bound on the minimum number #op(σ) of operations on
synopsis trees that are required to transform σ into σ∗. From previous constructions,
we can easily verify that

#op(σ) ≤ #op(α) +#op(β) + 2

and hence #op(σ) ≤ 2∣σ∣.
For the last ingredient of the proof, we show that if σ →∗

op σ
′, then the two languages

⟦σ⟧ and ⟦σ′⟧ are repairable one into the other by means of a sequence of editing oper-
ations of uniformly bounded length. In other words, a single promotion, demotion, or
reduction operation to a synopsis tree σ corresponds to a small amount of edits that

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:25

are applicable to any generic tree in the language ⟦σ⟧. The proof of this result is via
a simple analysis of the transformations on unranked trees that are induced by the
operations of promotion, demotion, and reduction.

LEMMA 6.7. If σ′ is a synopsis tree obtained from another synopsis tree σ via
a single promotion, demotion, or reduction operation, then cost(⟦σ⟧, ⟦σ′⟧) ≤ 2 and
cost(⟦σ′⟧, ⟦σ⟧) ≤ 2. In particular, it follows by induction that cost(⟦σ⟧, ⟦σ∗⟧) ≤ 4∣σ∣ and
cost(⟦σ∗⟧, ⟦σ⟧) ≤ 4∣σ∣.

PROOF. It is sufficient to prove that cost(⟦σ⟧, ⟦σ′⟧) ≤ 2, as the symmetric bound
cost(⟦σ′⟧, ⟦σ⟧) ≤ 2 follows from the fact that standard editing operations on trees can
be reverted. In the sequel, we assume that all synopsis trees are related to a stepwise
automaton S. We apply a case distinction based on the type of operation that trans-
forms σ into σ′:

(1) Consider a promotion operation, which takes a synopsis tree of the form σ =
X(α, H1(. . .Hk(ε, βk), . . . , β1)) and transforms it into the synopsis tree σ′ =
X(H1(. . .Hk(α,βk), . . . , β1), ε). Consider also a generic tree t ∈ ⟦σ⟧. This can be
written as

t = C ○ (s@(C1 ○ (. . .Ck ○ (a@sk) . . .@s1))),
for some C ∈ L (S ∣ X), s ∈ ⟦α⟧, Ci ∈ L (S ∣ Hi), si ∈ ⟦βi⟧, and a ∈ Σ. For the sake of
brevity, define the horizontal context

C̄ = C1 ○ (. . .Ck ○ (●@sk) . . .@s1).
in such a way that we can write t = C ○ (s@(C̄ ○ a)). After deleting the a-labeled
node from t, we obtain the tree t′ = C ○ (C̄ ○ s), and after inserting a b-labeled node,
we obtain the tree

t′′ = C ○ ((C̄ ○ s)@b) = C ○ ((C1 ○ ((. . .Ck ○ (s@sk) . . .)@s1))@b),
which clearly belongs to ⟦σ′⟧.

(2) Consider now a demotion operation, which takes a synopsis tree σ and transforms
it into the synopsis tree σ′ = ε(ε, σ). Let t ∈ ⟦σ⟧ and let x be the leftmost leaf in
t (note that this corresponds to the root of the unranked tree ext−1(t)). We can
write t = C ○a, where a is the label of the leftmost leaf x of t and C is the horizontal
context obtained from t by relabeling xwith a placeholder. By applying an insertion
operation to t, we obtain the tree t′ = b @ (C ○ a), which clearly belongs to ⟦σ′⟧.

(3) We finally consider a reduction operation, which transforms a synopsis tree σ =
ε(α, ε) into the synopsis tree σ′ = α. We can write any generic tree t ∈ ⟦σ⟧ as t = s@ a,
where s ∈ ⟦α⟧ and a ∈ Σ. In this case it suffices to perform one deletion in order to
obtain the tree t′ = s, which clearly belongs to ⟦σ′⟧.

We observe that the repair strategies defined above can be lifted to trees under any
given context C. More precisely, if a tree t ∈ ⟦σ⟧ is transformed with editing operations
into a tree t′ ∈ ⟦σ′⟧, then the tree C ○ t can be edited into C ○ t′ using the analogous
strategy. This observation is important because the operations of promotion, demotion,
and reduction may be applied at arbitrary nodes of synopsis trees.

To conclude the proof, we remark that, thanks to Lemma 6.6, the normal form σ∗
of any synopsis tree σ can be obtained by applying a sequence of promotions, demo-
tions, and reductions of length at most 2∣σ∣. A simple induction finally implies that
cost(⟦σ⟧, ⟦σ∗⟧) ≤ 4∣σ∣ and cost(⟦σ∗⟧, ⟦σ⟧) ≤ 4∣σ∣.

We have all the ingredients now to prove Lemma 6.1.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

PROOF OF LEMMA 6.1. Let θ be the intermediate synopsis tree such that σ ↪↠ θ ↪⇌
τ , whose existence is shown in Lemma 6.2. Recall that Lemma 6.3 implies ⟦θ⟧S ⊆ ⟦τ⟧T .
As ∣θ∣ = ∣τ ∣, it is sufficient to show that cost(⟦σ⟧S , ⟦θ⟧S) ≤ 4∣σ∣+4∣θ∣. This last claim can be
proved using Lemma 6.7, which implies cost(⟦σ⟧S , ⟦σ∗⟧S) ≤ 4∣σ∣ and cost(⟦θ∗⟧S , ⟦θ⟧S) ≤
4∣θ∣, and the fact that σ ↪↠ θ, which implies σ∗ = θ∗.

We conclude the subsection by proving Proposition 5.8, which essentially gives an
upper bound for the cost of an optimal repair strategy from L (S) to L (T). In order to
prove this proposition, we need to analyze the minimum size of a basic synopsis tree
of T that covers a given primitive synopsis tree of S:

LEMMA 6.8. Given a primitive synopsis tree σ of S, if σ is covered by some basic
synopsis tree of T , then it is covered by one such tree τ ∈ BST(T) that has size at most
(4∣σ∣ + 1) ⋅ ∣SCC(T)∣, where ∣σ∣ is the number of nodes of σ and ∣SCC(T)∣ is the number of
components of T .

PROOF. Let σ ∈ PST(S) and τ ∈ BST(T) such that σ ↪ τ and let λ be the injective
function from non-trivial nodes of σ to non-trivial nodes of τ that witnesses σ ↪ τ . We
begin by identifying those nodes of τ that belong to the range of λ. Formally, we say
that a node y of τ is used if y ∈ λ(x) for some non-trivial node x of σ. Below, we show
how to restrict τ to a subset of its nodes having size at most (4∣σ∣ + 1) ⋅ ∣SCC(T)∣ and
such that the induced sub-graph is a basic synopsis tree of T that also covers σ.

We first define the set V that only contains the following nodes:

(1) the root of τ ,
(2) the used nodes of τ , and
(3) the nodes of τ whose both sub-trees contain some used nodes of τ .

We claim that the sub-graph of τ induced by V is a tree with at most two children
on each node (note that some internal nodes in the induced sub-graph V may contain
only one child). Consider two nodes y1, y2 in V . Let y be the least common ancestor of
y1 and y2 in τ . As both sub-trees of y in τ contain used nodes – indeed, they contain y1

and y2, respectively – the node y also belongs to V . This shows that V is closed under
least-common-ancestor and hence τ restricted to V is a tree with out-degree at most 2.

We can also verify that the size of V is at most 2∣σ∣ + 1. Indeed, the number of used
nodes in τ is at most ∣σ∣, and so is the number of nodes whose both sub-trees contain
used nodes.

Next, we extend the set V minimally in such a way that the induced sub-graph of τ
is a basic synopsis tree (in particular, it is a binary tree). Formally, we let W be the set
of the following nodes:

(4) the nodes in V ,
(5) the nodes of τ with one sub-tree containing some used nodes and with label differ-

ent from that of its parent, and
(6) the immediate successors in τ of all previous nodes.

Clearly, the sub-graph of τ induced by W , denoted τ ∣W , is a full binary tree, namely, all
internal nodes have exactly two children. Essentially, this holds because we included
in W the immediate successors of a set of nodes.

It is also easy to see that τ ∣W is a basic synopsis tree. Indeed, consider a node y ∈
W and its two successors y1 and y2 in the induced sub-graph τ ∣W . If both y1 and y2

are immediate successors of y in τ , then, since τ respects the transition function δ of
T , there exist some states q ∈ τ(y), q1 ∈ τ(y1), and q2 ∈ τ(y2) such that q ∈ δ(q1, q2).
Otherwise, if y1 is not an immediate successor of y, then all the nodes of τ between

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:27

y and the parent of y1 must have the same label τ(y) (otherwise, one of these nodes
would belong to W , thus contradicting the fact that y1 is a successor of y in τ ∣W). From
this, using similar arguments as in the previous case, we conclude that q ∈ δ(q1, q2) for
some states q ∈ τ(y), q1 ∈ τ(y1), and q2 ∈ τ(y2). The case where y2 is not an immediate
successor of y in τ is just symmetric. Overall, this proves that the induced sub-graph
τ ∣W respects the transition function of T and hence it is a basic synopsis tree.

To prove that τ ∣W covers σ, it suffices to recall that W contains all used nodes of
τ , i.e. λ(x) ∈ W for all non-trivial nodes of σ, and hence the same function λ that
witnessed σ ↪ τ can be used to witness σ ↪ τ ∣W .

It remains to prove that ∣W ∣ ≤ (4∣σ∣+ 1) ⋅ ∣SCC(T)∣. It is easy to see that every node in
W ∖V either has a descendant which is used or it is the successor of a node with a used
descendant. This means that any subset of W ∖ V that contains only nodes that are
pairwise incomparable with respect to the ancestor relation has size at most twice the
number of used nodes, hence at most 2∣σ∣. Moreover, if we consider sets of nodes from
W ∖ V totally ordered with respect to the ancestor relation, then we observe that such
a set has size at most ∣SCC(T)∣: indeed, every two nodes in this set that are consecutive
in τ must be labeled with different components. Putting all together, and recalling that
∣V ∣ ≤ 2∣σ∣ + 1, we conclude that ∣W ∣ ≤ 2∣σ∣ + 1 + 2∣σ∣ ⋅ ∣SCC(T)∣ ≤ (4∣σ∣ + 1) ⋅ ∣SCC(T)∣.

We are now ready to derive an upper bound for the cost of an optimal repair strategy
from L (S) to L (T) under the assumption that all primitive synopsis trees of S are
covered by basic synopsis trees of T .

PROOF OF PROPOSITION 5.8. Let f be a function that maps every primitive syn-
opsis tree σ of S to a basic synopsis tree τ of T that covers σ. Following the previous
results, the strategy for repairing L (S) into L (T) can be obtained from a series of
transformations between languages having the following costs:

cost(L (S), ⋃σ∈PST(S) ⟦σ⟧S) = 0 (by Lemma 5.2)

cost(⟦σ⟧S , ⟦f(σ)⟧T) ≤ 4∣σ∣ + 4∣f(σ)∣ (by Lemma 6.1)

cost(⟦f(σ)⟧T , L (T)) ≤ (4∣f(σ)∣ + 1) ⋅ 2∣Q′∣ (by Lemma 5.5)

where Q′ is the set of states of T . In particular, we get:

cost(L (S),L (T)) ≤ max
σ∈PST(S)

{4∣σ∣ + 4∣f(σ)∣ + (4∣f(σ)∣ + 1) ⋅ 2∣Q′∣}.

As we previously pointed out, any primitive synopsis tree σ of S is of bounded size,
precisely, ∣σ∣ ≤ 2∣Q∣, where Q is the set of states of S. As concerns the minimum size of
a basic synopsis tree f(σ) that covers σ, by applying Lemma ?? for every σ ∈ PST(S),
there is τ ∈ BST(T) such that σ ↪ τ and

∣τ ∣ ≤ (4∣σ∣ + 1) ⋅ ∣SCC(T)∣

In particular, we can assume, without loss of generality, that ∣f(σ)∣ ≤ (2∣Q∣+2+1)⋅∣SCC(T)∣.
Putting everything together, we obtain:

cost(L (S),L (T)) = O(∣SCC(T)∣ ⋅ 2∣Q∣+∣Q′∣) .

6.2. From repair to covering
In this subsection we prove the “only if” direction of Theorem 5.7. We fix for the rest
of the section two stepwise automata S = (Σ,Q, δ, δ0, F) and T = (∆,Q′, δ′, δ′0, F

′) rec-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

ognizing the source and the target languages, respectively. We assume that L (S) is
repairable into L (T) with uniformly bounded cost and we prove that every primitive
synopsis tree of S is covered by some basic synopsis tree of T .

The general idea is to associate with each primitive synopsis tree σ of S a suitable
tree tσ ∈ L (S), called witness tree of σ, such that from any optimal repair of tσ into
L (T) one can extract a basic synopsis tree τ of T that covers σ. Intuitively, the witness
tree tσ is obtained from the primitive synopsis tree σ by replacing every non-trivial
node x with a sufficiently large number of repetitions of a special context in L (S ∣
σ(x)), called fingerprint context. The number of repetitions of each fingerprint context
will depend on the worst-case repair cost K = dist(L (S),L (T)). Using the definition
of witness tree tσ and the assumption that tσ can be repaired into some tree t′σ ∈ L (T)
with at most K edits, one can then argue that t′σ contains at least one copy of the
fingerprint context associated with each non-trivial node x of σ and, furthermore, the
arrangements of these fingerprint contexts inside tσ and inside t′σ are the same, both
with respect to the post-order relation and with respect to the ancestorship of the non-
horizontal components. One finally looks at some run of T that accepts the tree t′σ: this
run, together with the structure of the fingerprints inside t′σ, induces a basic synopsis
tree τ of T and a coverability relation from σ to τ . Below, we illustrate the various
definitions and arguments in more detail. We divide up the proof into constructing the
witness tree tσ and building the cover from its repair.

Constructing the witness tree. We begin by giving the following lemma, which
defines the so-called fingerprint context of a component of S. Basically, the lemma
shows that given a component X of S, one can find a context CX that can be “pumped”
inside the language L (S ∣ X) (i.e., CX ○ . . . ○ CX ∈ L (S ∣ X)) and that characterizes
the containment of L (S ∣ X) in L (T ∣ Y) for every component Y of T (i.e., L (S ∣ X) ⊆
L (T ∣ Y) iff CX ∈ L (T ∣ Y)). We say that a context C is cyclic for a component X if
there is a state q ∈X such that q ∈ δ(q,C).

LEMMA 6.9. For all X ∈ SCC(S), there is a cyclic context CX ∈ L (S ∣ X) such that,
for all Y ∈ SCC(T),

L (S ∣X) ⊆ L (T ∣ Y) iff CX ∈ L (T ∣ Y).
PROOF. Let X be a component of S and let Y1, . . . , Ym ∈ SCC(T) be all the compo-

nents of T . We construct the cyclic context CX by exploiting an induction over the
number m of components of T , that is, we prove that for every 0 ≤ i ≤ m, there is a
cyclic context Ci ∈ L (S ∣X) such that:

∀1 ≤ j ≤ i. L (S ∣X) ⊆ L (T ∣ Yj) iff Ci ∈ L (T ∣ Yj) (⋆)

Clearly, the statement of the lemma follows from (⋆) when we let CX = Cm.
The base case i = 0 holds vacuously for Ci = ●, so we focus on the inductive step.

Suppose that we defined a context Ci that satisfies (⋆) for some index 0 ≤ i < m. To
construct a context Ci+1 that satisfies (⋆), we need to distinguish two cases, depending
on whether L (S ∣X) ⊆ L (T ∣ Yi+1) or not.

If L (S ∣ X) ⊆ L (T ∣ Yi+1), then we define Ci+1 = Ci and we observe that (⋆) holds
trivially for i + 1.

Otherwise, if L (S ∣X) ⊈ L (T ∣ Yi+1), we let C be a context in L (S ∣X)∖L (T ∣ Yi+1).
Since Ci is cyclic and C ∈ L (S ∣ X), there exist some states p, q, r ∈ X such that
r ∈ δ(r,Ci) and q ∈ δ(p,C). Let C ′ and C ′′ be some other contexts in L (S ∣ X) such
that r ∈ δ(q,C ′) and p ∈ δ(r,C ′′) (such contexts exist since p, q, r are states within the
same strongly connected component of S). We then define:

Ci+1 = Ci ○C ′ ○C ○C ′′.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:29

tσ1 tσ2

C1 C2

q1 q2

@q′1 q′2

C

CHX

q′

q

q

⎫
⎪⎪
⎬
⎪⎪
⎭

=

C′

CKn.h. when X is
non-horizontal

Fig. 12. Construction of the witness tree.

We claim that Ci+1 is a cyclic context in L (S ∣ X). Indeed, we have the following runs
in the source automaton S:

r C′′

ÐÐ→ p CÐÐ→ q C′

ÐÐ→ r CiÐÐ→ r.

It is also easy to see that Ci+1 /∈ L (T ∣ Yi+1). Indeed, if Ci+1 ∈ L (T ∣ Yi+1), then there
would exist some states p′, q′ ∈ Yi+1 such that q′ ∈ δ′(p′,C), which would contradict the
fact that C /∈ L (T ∣ Yi+1).

We have just constructed a cyclic context Ci+1 ∈ L (S ∣ X) such that L (S ∣ X) ⊆
L (T ∣ Yi+1) iff Ci+1 ∈ L (T ∣ Yi+1). To conclude the proof, we recall from the inductive
hypothesis that, for all 1 ≤ j ≤ i, L (S ∣ X) ⊈ L (T ∣ Yj) implies Ci /∈ L (T ∣ Yj),
and hence, since Ci+1 contains an occurrence of Ci, Ci+1 /∈ L (T ∣ Yj). Symmetrically,
L (S ∣ X) ⊆ L (T ∣ Yj) implies Ci+1 = Ci ∈ L (T ∣ Yj). All together, this shows that, for
all 1 ≤ j ≤ i + 1, L (S ∣X) ⊆ L (T ∣ Yj) iff Ci+1 ∈ L (T ∣ Yj).

For the rest of this subsection, we fix for each component X of S a context CX that
satisfies Lemma 6.9 and we call it fingerprint context. We also fix an arbitrary primitive
synopsis tree σ of S.

Below, we construct the so-called witness tree tσ by exploiting a structural induction
on the primitive synopsis tree σ. In doing so, we will guarantee that there exists a run
of S on tσ that assigns to the root of tσ some state that belongs to the same component
that labels the root of σ, namely, δ(tσ) ∩ σ(ε) ≠ ∅. We omit the construction for the
base case, where σ is a singleton, since it can be easily derived from what follows.
We assume that X is the component at the root of σ and that σ1 and σ2 are the (non-
empty) left and right sub-trees of σ. Suppose that tσ1 and tσ2 are the recursively defined
witness trees for σ1 and σ2. Moreover, choose arbitrarily some q1 (resp., q2) in the non-
empty set δ(tσ1)∩σ1(ε) (resp., δ(tσ2)∩σ2(ε)). The witness tree tσ for σ is obtained from
the following series of transformations (we suggest the reader to refer to Figure 12 for
a graphical representation):

(1) The first transformation merges the trees tσ1 and tσ2 into a single tree that induces
a run of S ending in the component X. We know from the definition of primitive
synopsis tree that σ respects the transition function of S. In particular, this means
that there exist some states q′ ∈ X, q′1 ∈ σ1(ε), and q′2 ∈ σ2(ε) such that q′ ∈ δ(q′1, q′2).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

Moreover, since q1 and q′1 (resp., q2 and q′2) belong to the same component at the root
of σ1 (resp., σ2), there exist some contexts C1 ∈ L (S ∣ σ1(ε)) and C2 ∈ L (S ∣ σ2(ε))
such that q′1 ∈ δ(q1,C1) and q′2 ∈ δ(q2,C2). This allows us to construct the tree

(C1 ○ tσ1) @ (C2 ○ tσ2)
that induces a run of S ending in state q′, within the component X.

(2) The second transformation extends the tree obtained in the previous step in such
a way that one can later append repetitions of the fingerprint context CX . This is
done by identifying a “recurrent” state q such that q ∈ δ(q,CX) (this state exists
since CX is cyclic) and then connecting it to the state q′ via a suitable context
C ∈ L (S ∣X) such that q ∈ δ(q′,C) (note that q and q′ belong to the same component
X). The resulting tree is of the form:

C ○ ((C1 ○ tσ1) @ (C2 ○ tσ2)).
In order to avoid that an editing of the witness tree tσ could modify the ancestor-
ship of CX with the nodes of the two sub-trees tσ1 and tσ2 , we further assume that,
if X is a non-horizontal component, then the context C that is used for connecting
q to q′ is of the form CKn.h. ○ C ′, where K = dist(L (S),L (T)), C ′,Cn.h. ∈ L (S ∣ X),
Cn.h. is some cyclic non-horizontal context, and CKn.h. is the K-fold repetition of Cn.h.

(recall that the ancestorship of non-horizontal contexts is preserved by the editing
operations).

(3) The last transformation adds a sufficiently large repetition of the fingerprint con-
text CX . For this, we define H =m ⋅ (2K +1), where K = dist(L (S),L (T)) and m is
the number of components of T . We then attach to the tree so far constructed the
H-fold repetition CHX of the fingerprint context CX , finally obtaining the desired
witness tree:

tσ = CHX ○ C ○ ((C1 ○ tσ1) @ (C2 ○ tσ2)).
We observe that, thanks to the above constructions, the automaton S admits a run on
tσ that ends in state q ∈X. This shows that the invariant δ(tσ) ∩X ≠ ∅ is satisfied. We
also remark that it may happen that δ(tσ) ∩ F = ∅ and hence tσ ∉ L (S). Technically
speaking, this could violate the claim that one can repair tσ into L (T) with at most
K edits. However, from the assumption that S is trimmed it follows that there is a
context CF such that δ(q,CF) ∩ F ≠ ∅ and hence one can always prolong tσ to obtain
a tree inside the language L (S). From now on, we assume for the sake of simplicity
that tσ ∈ L (S).
Building the covering from a repaired witness tree. We now turn towards ex-
tracting a covering of σ from a repair of tσ. We fix, once and for all, the tree t′σ in the
target language L (T) that is obtained by repairing tσ with at most K edits.

We recall that the witness tree tσ contains H = m ⋅ (2K + 1) copies of the fingerprint
context CX , for each node x in σ, whereX = σ(x). As a consequence, the repaired tree t′σ
must contain an m-fold repetition CmX of each fingerprint context CX . In the following,
we will look at the occurrences of these fingerprint contexts inside the repaired tree t′σ
and compare their post-order and ancestor relationships with those for the analogous
occurrences in tσ. We need some preliminary definitions.

Given a context C and a node x of a tree t, we say that C occurs at node x if there
exist a context C ′ and a tree t′′ such that (i) t can be written as C ′○C ○t′′ and (ii) x is the
node where the sub-tree C ○ t′′ of t hangs from. We denote an occurrence of a context
C at a node x of a tree t by the pair (C,x). Furthermore, we say that two occurrences
(C,x) and (C ′, x′) of two contexts inside the same tree t are non-overlapping (resp., in
post-order relation, ancestor relation) if {x} ⋅ nodes(C) ∩ {x′} ⋅ nodes(C ′) = ∅ (resp., if
x ≼postt x′, if x ≼anct x′).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:31

The following lemma shows that the occurrences of the contexts CmX inside tσ are in
the same post-order relation as some corresponding occurrences inside t′σ, and simi-
larly for the ancestor relation when X is a non-horizontal component.

LEMMA 6.10. One can find a mapping f from the non-trivial nodes x of the primi-
tive synopsis tree σ to the nodes f(x) of the repaired witness tree t′σ such that:

— the context CmX , where X = σ(x), occurs at node f(x) in t′σ, for all non-trivial nodes x
of σ,

— all occurrences (CmX , f(x)), with X = σ(x) and x non-trivial node of σ, are pairwise
non-overlapping,

— x ≼postσ y iff f(x) ≼postt′σ
f(y), for all non-trivial nodes x, y of σ,

— x ≼ancσ y iff f(x) ≼anct′σ f(y), for all non-trivial nodes x, y of σ, with σ(x) non-horizontal
component.

PROOF. We begin by establishing a property that concerns the occurrences of con-
texts in a tree that has been edited. Intuitively, the following claim implies that, if
t′ is a tree obtained from t by applying at most K edit operations and t contains an
occurrence of the 2K + 1-fold repetition of a context C, then t′′ contains at least one
occurrence of the same context C.

CLAIM 1. Let t be a curried tree and let t′′ be the curried tree obtained from t after a
deletion or an insertion of a single node. If t contains at least n non-overlapping occur-
rences of the same context C, then t′′ contains at least n−2 non-overlapping occurrences
of C.

PROOF. We prove the claim for the deletion operation only, as the arguments for the
case of an insertion are similar. Let x be the node that is deleted from t. As mentioned
in Subsection 5.3, there is a unique way to represent the deletion of x using composition
of trees and contexts, namely, we can write

t = C ′′ ○ (t′′′@(C ′ ○ a))

where a is the label of node x and C ′ is the horizontal context that represents the forest
of sub-trees under x. The result of the deletion of node x gives the curried tree

t′′ = C ′′ ○ (C ′ ○ t′′′).

Note that the deletion operation, performed on curry encodings, removes exactly two
nodes: the a-labeled leaf that corresponds to x and the @-labeled node y that connects
t′′ to C ′ ○ a. All other nodes are preserved (but possibly re-arranged) by this transfor-
mation. In particular, this means that if (C, z) is an occurrence of the context C in t
that does not overlap with the a-labeled node x nor with the @-labeled node y, then C
occurs in either C ′′, C ′, or t′′′. This shows that C occurs at least once in t′′. In general,
suppose that there are n non-overlapping occurrences of C in t. Since the deletion op-
eration affects only two nodes, x and y, we have that, in the worst-case, all but two of
these occurrences of C can be found in t′′ and hence t′′ contains at least n − 2 occur-
rences of C. Finally, it is easy to see that the deletion operation preserves the property
of occurrences of being non-overlapping.

We continue now with the proof of Lemma 6.10. We consider a non-trivial node x of the
primitive synopsis tree σ and let X = σ(x) be the associated component. By definition
of tσ, we know that the context CHX occurs in tσ. We also recall that H =m ⋅ (2K + 1). In
particular, tσ contains (2K + 1) occurrences of the context CmX . As t′σ is obtained from
tσ by applying at most K edit operations to it, we know from the above claim that the

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

context CmX occurs at least once in t′σ. We denote by f(x) some node of t′σ where CmX
occurs. We have just proved the first part of the lemma.

For second part, let x and y be two distinct non-trivial nodes of σ and let X = σ(x)
and Y = σ(y). Furthermore, let f(x) and f(y) be the nodes in t′σ where the contexts
CmX and CmY occurs. Note that the occurrences of these two contexts in tσ are non-
overlapping. Since deletion and insertion operations preserve the property of context
occurrences of being non-overlapping, we have that (CmX , f(x)) and (CmY , f(y)) are also
non-overlapping occurrences in t′σ.

Now, suppose that x ≼postσ y. Let x′ and y′ be the nodes in tσ that carry the corre-
sponding occurrences of the contexts CHX and CHY , respectively. It is routine to check,
by exploiting the recursive definition of tσ, that x′ ≼posttσ

y′. In addition, we know that
edit operations preserve the post-order relationships between nodes. As previously dis-
cussed, at least one occurrence of CmX (resp., CmY) inside CHX (resp., CHY) is not affected
by the edit operations that transform tσ into t′σ. This means that the corresponding
occurrences (CmX , f(x)) and (CmY , f(y)) in t′σ are in the same post-order relationship as
x and y, namely, f(x) ≼postt′σ

f(y). The converse implication follows from the fact that
≼postσ is a total order (hence it is sufficient to swap the roles of x and y above).

We finally check the last condition. Suppose that X = σ(x) is a non-horizontal com-
ponent and that x ≼ancσ y. As before, let x′ and y′ be the nodes in tσ that carry the occur-
rences of CHX and CHY , respectively. Thanks to the construction of tσ, we have x′ ≼ancσ y′.
Moreover, recall that during the construction of tσ, we inserted K copies of the non-
horizontal context Cn.h. immediately below CHX (and thus above CHY). This implies that
the path in tσ that connects the node x′ to its descendant y′ visits at least K right
edges. If we now look at the unranked tree ext−1(tσ) encoded by tσ, we observe that
there is a bijection between the right edges in tσ and the vertical edges in ext−1(tσ),
and this bijection preserves the ancestor order. This means that the two portions of
the unranked tree ext−1(tσ) that are encoded by CHX and CHY , namely, ext−1(CHX) and
ext−1(CHY), are separated by at least K vertical edges. Finally, each deletion or inser-
tion operation performed on ext−1(tσ) can only bring two nodes closer by one level at
a time. This means that after at most K edit operations, the resulting curried tree t′σ
contains the occurrence of CmX at node f(x) is still above the occurrence of CmY at node
f(y). We have just proved that x ≼ancσ y implies f(x) ≼anct′σ f(y). The converse implication
follows by symmetric arguments.

It now remains to show how to extract a basic synopsis tree τ that covers σ from the
tree t′σ. Recall that t′σ ∈ L (T) and let ρ be an accepting run of T on t′σ. Further let f
be the mapping from non-trivial nodes of σ to nodes of t′σ, as defined in Lemma 6.10.
Consider a non-trivial node x of σ and let X be its label. We know that the context
CmX occurs at node f(x) in t′σ. Let y be the node of the fingerprint context CX that is
labeled with the placeholder symbol ●. Clearly, CX occurs in its m-fold iteration CmX
at positions ε, y, y ⋅ y, . . ., ym−1. Analogous (non-overlapping) occurrences exist in t′σ,
namely, at positions yx,0 = f(x), yx,1 = f(x) ⋅ y, yx,2 = f(x) ⋅ y ⋅ y, . . ., yx,m−1 = f(x) ⋅ ym−1.
For convenience, let yx,m = f(x) ⋅ ym.

Next, we consider the states that occur at the m+1 nodes yx,0, yx,1, . . . , yx,m of the run
ρ on t′σ. By the Pigeonhole Principle, we know that two among these states, say ρ(yx,i)
and ρ(yx,j) for some 0 ≤ i < j ≤ m, belong to the same component Y of T . In fact, from
the definition of strongly connected component, we can even assume that j = i+1, from
which we immediately obtain CX ∈ L (T ∣ Y). It is now time to exploit the property
of the fingerprint context CX , shown in Lemma 6.9. In particular, from the fact that
CX ∈ L (T ∣ Y) we derive L (S ∣X) ⊆ L (T ∣ Y).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:33

We have just showed that it is possible to find a mapping from any non-trivial node
x of σ to a node yx (= yx,i) in t′σ such that L (S ∣ X) ⊆ L (T ∣ Y), where X = σ(x) and Y
is the component of the state ρ(yx). Thanks to Lemma 6.10, we can also claim that, for
all non-trivial nodes x,x′ in σ,

— x ≠ x′ implies yx ≠ yx′ ,
— x ≼postσ x′ iff yx ≼postt′σ

yx′ ,
— x ≼ancσ x′ iff yx ≼anct′σ yx′ , provided that the component σ(x) is non-horizontal.

Towards a conclusion, we define now the basic synopsis tree τ that covers σ. The do-
main of τ coincides with the domain of t′σ, i.e., nodes(τ) = nodes(t′σ). The labeling func-
tion of τ maps every trivial node x of τ to the trivial component ε, and every non-trivial
node x to the component that contains the state ρ(yx) associated with the correspond-
ing node yx in t′σ. It is easy to see that τ satisfies the properties of a basic synopsis
tree (in particular, it respects the transitions of T because its labeling is essentially
the lifting of a valid run ρ of T). It remains to define the mapping λ that witnesses the
coverability of σ by τ : for this we simply let λ(x) = yx for every non-trivial node x of
σ. The fact that λ satisfies Definition 5.6 follows easily from the properties described
by the three items above (for instance, the fact that λ is injective follows from the first
item). This proves that every primitive synopsis tree of S is covered by a basic synopsis
tree of T .

7. COMPLEXITY ANALYSIS
In this section we investigate the complexity of deciding whether a regular tree lan-
guage S is bounded repairable into a regular tree language T and we assume that S
and T are represented by automata S and T respectively. One can propose a straight-
forward decision procedure following the characterization of bounded repairability
with synopsis trees (Theorem 5.7): for every primitive synopsis tree of S it suffices to
guess a covering basic synopsis tree of T . We also recall from Remark 5.3 that the size
of a primitive synopsis tree of S is bounded by a function exponential in the number of
strongly connected components of S. Hence, by Lemma 6.8, an analogous bound holds
for the size of basis synopsis trees of T . It is also easy to see that testing the covering
of a primitive synopsis tree by a basic synopsis tree can be performed efficiently in the
size of the synopsis trees. These observations show that deciding bounded repairability
for languages represented by tree automata is in EXPSPACE.

We show, however, that a more efficient procedure exists: rather than inspecting
individual elements of PST(S) and verifying that they are covered by elements of
BST(T), it checks inclusion of the sets of normalized synopsis trees. More precisely,
we first relabel synopsis trees in BST(T) with compatible connected components of S,
and as a result, we deal with synopsis trees labeled with elements of SCC(S). Next,
we define a serialization of a synopsis tree, a string representation of the synopsis
tree, and show that serialization of a synopsis tree is the same as the serialization of
the normal form of the synopsis tree. Naturally, this reduces bounded repairability to
the inclusion of serializations of PST(S) and BST(T) respectively. Testing this inclu-
sion is not trivial because while both sets PST(S) and BST(T) can be captured with
tree automata, the serializations versions are string languages that need not be regu-
lar. We show, however, that serializations of flattened versions of PST(S) and BST(T)
can be captured with context-free grammars and, moreover, the context-free grammar
for PST(S) is non-recursive. We then use existing results on testing inclusion of non-
recursive context-free grammar in another (possibly) recursive context-free grammar
and obtain a CONEXP upper bound. Finally, we show that the CONEXP upper bound

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34

is tight even if we restrict the tree languages provided as input to those definable with
deterministic non-recursive DTDs.

7.1. Upper bound
We show that the complexity of testing bounded repairability between two regular
tree languages represented with tree automata is in CONEXP. For the reminder of
this section we fix automata S and T that recognize the source tree language and the
target tree language, respectively.

We begin by recalling the notion of embedding from Section 6.1. Given a synopsis
tree θ of S and a synopsis tree τ of T , we say that θ is embedded into τ , denoted θ ↪⇌ τ ,
if θ and τ have the same domain, i.e. nodes(θ) = nodes(τ), and θ is covered by τ via the
identity function, i.e. L (S ∣ θ(x)) ⊆ L (T ∣ τ(x)) for all nodes x. We define the set

EmbS(τ) = {θ synopsis tree of S ∶ θ ↪⇌ τ}
of all synopsis trees of S that are embedded into τ and we extend the notation to any
set S of synopsis trees by letting EmbS(S) = ⋃τ∈S EmbS(τ).

Next, we introduce a variant of the notion of serialization for synopsis trees and we
show that this can be used as an alternative representation of the normal form that
we introduced in Section 6. Such a serialization takes a synopsis tree θ and produces a
well-nested word θ̂ over the alphabet tags(S) that consists of opening tags of the form
⟨X⟩ and closing tags of the form ⟨/X⟩, with X ∈ SCC(S). It is important to remark that
the serialization θ̂ does not represent the specific tree θ, but rather the class of synopsis
trees that have the same normal form as θ. Formally, we define the serialization θ̂ of a
synopsis tree θ of S recursively as follows:

θ̂ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ̂1 ⋅ θ̂2 if θ =X(θ1, θ2) and X is a trivial component,

θ̂1 ⋅ θ̂2 ⋅ ⟨X⟩ ⋅ ⟨/X⟩ if θ =X(θ1, θ2) and X is a non-trivial horizontal component,

⟨X⟩ ⋅ θ̂1 ⋅ θ̂2 ⋅ ⟨/X⟩ if θ =X(θ1, θ2) and X is a non-horizontal component.

Note that the trivial components disappear in the serialization θ̂ of a synopsis tree θ.
As usual, we extend serializations to sets of synopsis trees by letting Û = {θ̂ ∶ θ ∈ U}.

It is easy to see that serializations are unaffected by the editing operations on syn-
opsis trees that are used to attain the normal form.

LEMMA 7.1. Given two synopsis trees θ and ζ of S such that θ →∗
op ζ, we have θ̂ = ζ̂.

In particular, we have θ̂ = θ̂∗, where θ∗ is the normal form of θ.

PROOF. By induction it suffices to show that applying a single editing operation
does not change the serialization. A quick inspection of the definitions of the editing
operations of promotion, demotion, and reduction (see Figure 11) shows that the claim
holds trivially.

The above lemma, together with the results proven in Section 6.1, implies the fol-
lowing:

COROLLARY 7.2. The language L (S) is bounded repairable into the language
L (T) if and only if Û ⊆ V̂ , where U = PST(S) and V = EmbS(BST(T)).

PROOF. To prove the left-to-right implication, suppose that L (S) is bounded re-
pairable into L (T) and consider a primitive synopsis tree σ ∈ U . We know from The-
orem 5.7 that σ is covered by some basic synopsis tree τ of T . Moreover, by Lemma
6.2, there exists a synopsis tree θ of S that “interpolates” σ and τ , namely, such that

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:35

σ is strongly covered by θ (denoted σ ↪↠ θ) and θ embedded into τ (denoted θ ↪⇌ τ). In
particular, we have that θ belongs to the set V = EmbS(τ). Moreover, since σ ↪↠ θ, we
know from Lemma 6.5 that the normal forms of σ and θ coincide, and hence by Lemma
7.1 we have σ̂ = θ̂. We conclude that σ̂ belongs to V̂ .

The proof of the converse direction is symmetric, namely, we assume that Û ⊆ V̂ , we
consider a primitive synopsis tree σ of S, and we prove that σ is covered by some basic
synopsis tree of T . Indeed, since σ ∈ U and Û ⊆ V̂ , we have σ̂ ∈ V̂ . This means that there
exist a synopsis tree θ of S and a basic synopsis tree τ of T such that θ ↪⇌ τ and θ̂ = σ̂.
In particular, Lemma 7.1 implies that θ and σ have the same normal form and hence
they strongly cover each other, whence σ ↪↠ θ ↪⇌ τ . We conclude that σ is covered by τ
and hence, by Theorem 5.7, L (S) is bounded repairable into L (T).

We conclude the section by showing how to test effectively the inclusion from Corol-
lary 7.2. For this, we introduce some context-free grammars that capture the languages
Û and V̂ , where U = PST(S) and V = EmbS(BST(T)). We can define these grammars
on the basis of the components of S and T and the transitions of S and T lifted to
these components. More precisely, the grammar GS that defines the language Û uses
non-terminals X,X1,X2, . . . that correspond to components of S and rules of the forms

X ∶∶= ⟨X⟩ ⟨/X⟩
X ∶∶= X1 X2 if X is a trivial component,
X ∶∶= X1 X2 ⟨X⟩ ⟨/X⟩ if X is a non-trivial horizontal component,
X ∶∶= ⟨X⟩ X1 X2 ⟨/X⟩ if X is a non-horizontal component,

where X1 ≠ X ≠ X2, q ∈ δ(q1, q2) for some q ∈ X, q1 ∈ X1, q2 ∈ X, and δ is the transition
function of S.

The grammar GS,T that defines the language V̂ uses the same non-terminals
X,X1,X2 ∈ SCC(S) and the same rules as above, but instead of enforcing X1 ≠ X ≠ X2

and q ∈ δ(q1, q2) for some q ∈ X, q1 ∈ X1, q2 ∈ X, it requires that there exists some
components Y,Y1, Y2 of the target automaton T such that (i) L (S ∣ X) ⊆ L (T ∣ Y), (ii)
L (S ∣ X1) ⊆ L (T ∣ Y1), (iii) L (S ∣ X2) ⊆ L (T ∣ Y2), and (iv) q ∈ γ(q1, q2) for some q ∈ Y ,
q1 ∈ Y1, and q2 ∈ Y2, where γ is the transition function of T .

Although testing the inclusion of two generic context-free languages is known to be
undecidable [Hopcroft and Ullman 1979], here we can exploit the fact that the gram-
mar GS is non-recursive to decide the inclusion L (GS) ⊆ L (GS,T). Indeed, a non-
recursive grammar defines a finite language of words whose lengths are uniformly
bounded by an exponent in the size of the grammar. Consequently, a non-deterministic
Turing machine can guess a word w of length exponential in the size of GS and
decide the non-containment L (GS) ⊈ L (GS,T) by checking that w ∈ L (GS) and
w /∈ L (GS,T). It is also known that the membership problem of context-free languages
can be solved in polynomial time [Younger 1967; Earley 1970]. The only subtlety here
is that, although the grammars GS and GS,T are of polynomial size with respect to
S and T , this reduction takes exponential time in the size of S and T : indeed, the
the definition of GS,T requires checking some containment relationships between the
languages recognized by the components of S and T . The latter problem, however, is
EXP-complete [Seidl 1990] and hence dominated by the time that is required to guess
the word w. We can thus claim the following complexity upper bound to the bounded
repair problem.

THEOREM 7.3. The bounded repair problem between languages represented by step-
wise tree automata is in CONEXP.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36

7.2. Lower bound
Here we show that the complexity bound established in Theorem 7.3 is tight. More
precisely, we prove a matching CONEXP lower bound for the bounded repair problem,
which, remarkably, holds even for tree languages represented by non-recursive deter-
ministic DTDs.

We recall the results in [Champavère et al. 2009], in particular, Proposition 4 and
Theorem 5, which show that any deterministic DTD can be transformed, in polyno-
mial time, into an equivalent deterministic stepwise automaton. In particular, this
means that the complexity lower bound for the bounded repair problem of languages
represented by (non-recursive) deterministic DTDs can be immediately transferred to
languages represented by deterministic stepwise automata.

We also recall the folklore PSPACE upper bound for the containment problem of non-
deterministic DTDs: given two DTDs D and D′, one can decide whether the language
defined by D is contained in the language defined by D′ by first removing the useless
rules and then checking that, for all letters a in the alphabet ofD, the regular language
associated with a in D is contained in the regular language associated with a in D′.
This upper bound result is tight due to the PSPACE-hardness of containment of regular
expressions [Stockmeyer and Meyer 1973]. We finally observe that the complexity of
the containment problem lowers to P as soon as deterministic DTDs are considered.
Interestingly, the situation is completely different for the complexity of the bounded
repair problem.

THEOREM 7.4. The bounded repair problem between languages represented by non-
recursive deterministic DTDs is CONEXP-hard.

PROOF. The proof is by a reduction from the problem of tiling a square grid of
exponential size [Boas 1997]. An instance of the latter problem is given by a tuple
I = (n,S,H,V, s�, s⊺), where n is a natural number encoded in unary and represent-
ing the width 2n of the square grid, S is a finite set of tiles, H,V ⊆ S × S are the
set of vertical and horizontal constraints, and s� and s⊺ are the tiles that should
mark the lower left and upper right corners. A tiling is a function f mapping pairs
(i, j) ∈ {1, . . . ,2n} × {1, . . . ,2n} to tiles f(i, j) ∈ S. We say that a tiling f satisfies the
constraints of I if the following conditions are satisfied:

(1) f(1,1) = s� and f(2n,2n) = s⊺,
(2) (f(i, j − 1), f(i, j)) ∈H for all 1 ≤ i ≤ 2n and all 1 < j ≤ 2n,
(3) (f(i − 1, j), f(i, j)) ∈ V for all 1 < i ≤ 2n and all 1 ≤ j ≤ 2n.

The exponential tiling problem is the problem of deciding whether there exists a tiling
f that satisfies all the constraints in a given instance I. This problem is known to be
NEXP-complete [Boas 1997].

Now, we fix an instance I = (n,S,H,V, s�, s⊺) of the exponential tiling problem and
we construct some regular languages S,T of unranked trees such that S is bounded
repairable into T if and only if there is no tiling satisfying the constraints of I. The
basic idea is to let the source language S contain encodings of the possible tilings,
and the target language T contain modified encodings that expose violations of some
constraint of I. The intended relation between S and T can be phrased as follows: if
every tree in S can be transformed into a tree in T with a small (i.e. uniformly bounded)
amount of edits, then every tiling of the exponential grid violates some constraint in
I, and vice versa. In order to forbid a repair strategy to modify the encoded tiling
with a bounded amount of edits, we will allow some redundancy in our encodings. For
convenience, we first describe the languages S and T as if they were given by means of
stepwise automata of polynomial size with respect to the instance I. Towards the end

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:37

of the proof, we will show how to modify the constructions in order to get languages
representable by non-recursive deterministic DTDs of polynomial size.

Source language. We begin by describing the trees in the language S. For the sake of
the brevity, we let N = 2n be the width of the grid to be tiled and we consider a generic
tiling f ∶ {1, . . . ,N} × {1, . . . ,N}→S. A tree that encodes the tiling f is labeled over an
alphabet consisting of tiles in S, separator symbols [and], and a dummy symbol #.
Each cell (i, j) in the grid is encoded by a series of consecutive leaves that spell out
a word of the form [[. . . [f(i, j) f(i, j) . . . f(i, j)] . . .]], where each symbol f(i, j) oc-
curs at least once and the square brackets are not necessarily well-parenthesized. The
repetitions of the symbols f(i, j) are used to ensure robustness to any repair strategy
of bounded cost. From now on, such repetitions will be simply represented by a super-
script +. The above word encoding a cell (i, j) is called a cell-block. Cell-blocks are then
juxtaposed to form the frontier of a tree, following the left-to-right bottom-to-top order
of the corresponding cells in the grid:

[+f(1,1)+]+... [+f(1,N)+]+
´¹¹¹¸¹¹¹¶

row 1

[+f(2,1)+]+... [+f(2,N)+]+
´¹¹¹¸¹¹¹¶

row 2

. . . [+f(N,1)+]+... [+f(N,N)+]+
´¹¹¹¸¹¹¹¶

row N

Finally, #-labeled internal nodes are introduced to guarantee that the frontier is well
formed, namely, it contains exactly N rows, each one consisting of N cell-blocks. This
can be done by enforcing the existence of 2n+ 1 levels above the frontier and by requir-
ing that each internal node at level ` = 0 . . .2n − 1 has exactly two children, and each
internal node at level 2n has a cell-block as childhood (see Figure 13).

#

⋱ ⋱
#

⋱ ⋱

⋱ ⋱ ⋱ ⋱
⋱ ⋱ ⋱ ⋱

#

[+ f(1,1)+]+[+ f(1,1)+]+[+ f(1,1)+]+ [+ f(1,N)+]+[+ f(1,N)+]+[+ f(1,N)+]+ [+ f(N,1)+]+[+ f(N,1)+]+[+ f(N,1)+]+ [+ f(N,N)+]+[+ f(N,N)+]+[+ f(N,N)+]+

1

n
+

12n
+

1

Fig. 13. Redundant encoding of a tiling by an unranked tree.

The source language S is defined as the set of all tree-shaped encodings of tilings
f that satisfy the first constraint of I, namely, those tilings f such that f(1,1) = s�
and f(N,N) = s⊺. The language S is clearly regular. Furthermore, it is not difficult to
construct a stepwise automaton S that recognizes S and has size polynomial in n and
∣S∣, and hence also in ∣I ∣ (we omit the formal definition of such an automaton).

Target language. We now turn to the target language T , which intuitively contains
encodings of S modified in a suitable way so as to expose violations of horizontal or
vertical constraints, which can then be checked by an automaton of small size.

We begin by analyzing the simpler case of a tiling f that violates a horizontal con-
straint, say between two tiles f(i, j − 1) and f(i, j). Observe that, in the frontier of
every tree of S that encodes f , the violating tiles are represented by two consecutive
cell-blocks of the form [+ f(i, j − 1)+]+ and [+ f(i, j)+]+. It is then convenient to expose
the violation at the least common ancestor of these two cell-blocks, which must occur at

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38

some level ` ∈ {n, . . . ,2n−1}. For example, this can be done by relabeling the least com-
mon ancestor with the pair (f(i, j−1), f(i, j)) (/∈H). In this case, the modified encoding
looks like the unranked tree in Figure 14 (for the sake of clearness, we highlighted the
cell-blocks corresponding to the tiles that violate the horizontal constraint).

⋮
⋮

⋮

(f(i, j − 1), f(i, j))(f(i, j − 1), f(i, j))(f(i, j − 1), f(i, j))

#

⋱ ⋱ ⋱ ⋱
#

. [+ f(i, j − 1)+]+[+ f(i, j − 1)+]+[+ f(i, j − 1)+]+ [+ f(i, j)+]+[+ f(i, j)+]+[+ f(i, j)+]+

at least n levels

⎧
⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪
⎩

Fig. 14. Exposure of a violation of a horizontal constraint.

We denote by TH the language of all trees that can be obtained by relabeling a node
of some tree in S as described above. We observe that the language TH is regular and,
furthermore, one can construct a stepwise automaton that recognizes TH and has size
polynomial in ∣I ∣.

We now deal with the case of a tiling t that violates a vertical constraint, say between
tiles f(i − 1, j) and f(i, j). The basic idea here is to “hide” under a new subtree the
factor of the frontier that starts with the corresponding occurrence of the cell-block
[+ f(i − 1, j)+]+ and ends just before the occurrence of the cell-block [+ f(i, j)+]+. Note
that this factor contains exactly N cell-blocks, so it can be hidden under a complete
binary tree of height n, such as the one depicted in Figure 15.

$

⋱ ⋱. . .
⋱ ⋱

$ $ $ $

[+ f(i−1, j)+]+[+ f(i−1, j)+]+[+ f(i−1, j)+]+ [+ f(i−1,N)+]+[+ f(i−1,N)+]+[+ f(i−1,N)+]+ [+ f(i,1)+]+[+ f(i,1)+]+[+ f(i,1)+]+ [+ f(i, j−1)+]+[+ f(i, j−1)+]+[+ f(i, j−1)+]+

Fig. 15. Factor of a frontier delimited by vertically adjacent tiles.

Similarly, the remaining part of the frontier consists of N − 1 sequences, each one
containingN cell-blocks, so this shape can be enforced using an almost complete binary
tree of height 2n, where exactly one node at level n (e.g. the rightmost one) is a leaf.
Putting all together, the modified encoding for the tiling f has the shape depicted in
Figure 16 (as before, we highlighted the cell-blocks corresponding to the tiles that
violate the vertical constraint).
Accordingly, we define the language TV of all unranked trees of the above form, for all
possible choices of 1 < i ≤ N and 1 ≤ j ≤ N such that (f(i−1, j), f(i, j)) /∈ V . Note that the
latter condition can be checked by a small automaton that compares the highlighted

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:39

#

⋱ ⋱
⋱ ⋱

#

⋱ ⋱
⋱ ⋱

#

. ##

⋱ . . . ⋱
⋱ ⋱

#

[+f(1,1)+]+[+f(1,1)+]+[+f(1,1)+]+ [+f(1,N)+]+[+f(1,N)+]+[+f(1,N)+]+ [+f(i−1,1)+]+[+f(i−1,1)+]+[+f(i−1,1)+]+ [+f(i−1, j−1)+]+[+f(i−1, j−1)+]+[+f(i−1, j−1)+]+ [+f(i, j)+]+[+f(i, j)+]+[+f(i, j)+]+ [+f(i,N)+]+[+f(i,N)+]+[+f(i,N)+]+$

⋱ . . . ⋱
$ $

[+ f(i−1, j)+]+[+ f(i−1, j)+]+[+ f(i−1, j)+]+ [+ f(i, j−1)+]+[+ f(i, j−1)+]+[+ f(i, j−1)+]+

Fig. 16. Exposure of a violation of a vertical constraint.

cell-blocks in the figure. In particular, the language TV is recognized by a stepwise
automaton of size polynomial in ∣I ∣.

We can finally construct the target language T as the union of TH and TV and recall
that this is also recognized by an automaton of polynomial size in ∣I ∣.
Reduction. Now, we need to argue that S is bounded repairable into T iff every tiling
of the exponential grid violates some constraint of I. We begin with the easier direction,
which assumes that every tiling violates some constrain of I. Consider a generic tree
t ∈ S that encodes a tiling f and let t′ ∈ T be the modified encoding that exposes a
violation of a horizontal or vertical constraint, as described above. We observe that the
frontiers of t and t′ spell out the same sequence of cell-blocks. In particular, t′ can be
obtained from t by deleting all internal nodes and by inserting new internal nodes.
Since the number of internal nodes in t and t′ is uniformly bounded by a constant
(roughly O(22n)), we know that S is bounded repairable into T .

As for the other direction, suppose that there is a tiling f that satisfies all constraints
of I. We fix an arbitrarily large number K and we prove that some tree t ∈ S requires
at least K edits in order to be transformed into a tree of T . The tree t is nothing but the
encoding of the tiling f , where each symbol in a cell-block is repeated K times; more
precisely, t is the unranked tree of Figure 13 where every superscript + is replaced with
K. We observe that every transformation of t consisting of less than K edits preserves
at least one occurrence of each symbol in the frontier, and it also preserves the post-
order relationships between these occurrences. Furthermore, note that occurrences of
symbols [and] ensure that every transformation do not change or mix the order of the
cell-block. This means that every such transformation produces a tree whose frontier
contains a subsequence that encodes the same tiling f as t. Consider now a generic
tree t′ ∈ T . We observe that the frontier of t′ contains exactly N2 cell-blocks, so it
encodes a tiling f ′ of the exponential grid. Moreover, by definition of T , the tiling f ′
must violate some constraint of I. We thus conclude that f and f ′ must be different
tilings, and hence t′ cannot be obtained as an editing of t with cost less than K. The
above argument holds for any arbitrarily large number K, so this proves that S is not
bounded repairable into T .

From automata to DTDs. It remains to show how to modify the languages S and T in
such a way that they can be succinctly described by non-recursive deterministic DTDs.
The general idea is to annotate the internal nodes of the trees in S and T with enough
information so as to ease a deterministic top-down processing. First of all, we need to

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40

annotate the internal nodes of all trees of S and T with their levels: this is possible
thanks to the fact that the considered trees have height at most 3n+ 2. In addition, we
mark the leftmost and rightmost paths of the trees of S with special labels, say 1 and 2
respectively (the marking at the root is irrelevant): this makes it possible to check, by
means of a DTD, that the first and last cell-blocks are of the form [+ s+�]+ and [+ s+⊺]+.
As for the trees in T , the crux is to ease the certification of a violation of a horizontal or
vertical constraint. To do so, we can promote the information about the violating tiles
up to the root. More precisely, on the trees depicted in Figure 14 and Figure 16, we
consider the access path to the first highlighted cell-block and we annotate all internal
nodes along this path with the corresponding tile; in a similar way, we add a second
annotation for the access path to the second highlighted cell-block. For example, the
parent of the cell-block [+ f(i, j)+]+ of the tree of Figure 16 will be labeled with the
tuple (#,2n, f(i − 1, j), f(i, j)), where 2n is the level of that node, and f(i − 1, j) and
f(i, j) indicate the tiles corresponding to the first and second highlighted cell-blocks.

The additional information on the labeling of the trees of S and T makes it easy to
describe these languages by means of non-recursive deterministic DTDs of size poly-
nomial in ∣I ∣. Finally, because only internal nodes are affected by the new annotation,
the same arguments for the proof of the reduction can be used here.

Combining Theorems 7.3 and 7.4, we obtain that the bounded repair problem for
tree languages represented by all standard specifications [Martens et al. 2006], that
is, stepwise tree automata, deterministic stepwise tree automata, XML Schema, DTDs,
non-recursive deterministic DTDs, is CONEXP-complete.

7.3. Simpler instances
In order to find sub-cases of the bounded repair problem with a lower complexity, we
consider a specialization of the problem where the alphabet Σ of the source language is
fixed. We show that, in this case, the problem is PSPACE-complete for languages rep-
resented by non-deterministic DTDs, and CONP-complete for languages represented
by deterministic DTDs.

Let us first discuss the complexity upper bounds. Suppose that D is a DTD defining
a source language over the fixed alphabet Σ. A close inspection to the translation from
DTDs to stepwise automata [Champavère et al. 2009] discloses the following crucial
property (see the appendix for the proof):

LEMMA 7.5. Given a non-deterministic (resp., deterministic) DTD D that defines
a source language S over an alphabet Σ, one can compute in polynomial time a non-
deterministic (resp., a deterministic) stepwise automaton S = (Σ,Q, δ, δ0, F) that recog-
nizes S and whose state space can be partitioned into k ≤ 2∣Σ∣ subsets Q1, . . . ,Qk such
that

— every component of S is contained in some set Qi,
— for all states q1, q2, q ∈ Q, if q ∈ δ(q1, q2) and q2 and q are in different components, then
q2 ∈ Qi and q ∈ Qj for some 1 ≤ i < j ≤ k.

For example, the automaton S described in Example 3.1 is a deterministic stepwise
automaton whose state space can be partitioned into 9 sets that satisfy the first part
of the claim: Q1 = {pa0}, Q2 = {pa1}, Q3 = {pb0}, Q4 = {pb1}, Q5 = {pc0}, Q6 = {pd0}, Q7 = {pd1},
Q8 = {pr0, pr1}, Q9 = {pr2}.

Lemma 7.5 above implies that any path in the transition graph of S (see, for in-
stance, the left-hand side graph of Figure 7) traverses at most 2∣Σ∣ − 1 vertical edges
that connect pairs of states in different components. As a consequence, any primitive

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:41

synopsis tree of S has size at most ∣Q∣2∣Σ∣, i.e., polynomial in the size of S when Σ is
fixed.

Putting together Lemma 7.5, Corollary 7.2, and Theorem 5.7 one obtains a PSPACE
(resp., CONP) algorithm that decides whether cost(S,T) < ∞, where S and T are lan-
guages defined by non-deterministic (resp., deterministic) DTDs and S is over a fixed
alphabet Σ. The algorithm has the same structure of the algorithm sketched before
Theorem 7.3. Namely, it translates the input DTDs into equivalent stepwise automata
S and T , then it translates S and T into the grammars GS and GS,T , and finally it
checks whether L (GS) ⊆ L (GS,T). As previously stated, the last step of the algorithm
can be done in CONP by universally-guessing a word w of polynomial size from L (GS)
and checking whether w ∈ L (GS,T) in polynomial time. Note that the translation of
S and T into GS and GS,T takes polynomial space for non-deterministic DTDs and
polynomial time for deterministic DTDs. The blow-up of the complexity for the former
is because one has to check language containment between regular languages which
can be done with polynomial space.

PROPOSITION 7.6. The bounded repair problem between a source language repre-
sented by a non-deterministic (resp., deterministic) DTD over a fixed alphabet and a
target language represented by a non-deterministic (resp., deterministic) DTD over an
arbitrary alphabet is in PSPACE (resp., in CONP).

Finally, we show that even strong restrictions, including fixing both alphabets, can-
not get us below PSPACE in the non-deterministic case. Indeed, one can easily reduce
the containment problem between regular expressions to a bounded repair problem be-
tween languages defined by non-recursive non-deterministic DTDs, thus showing that
the latter problem is PSPACE-hard. To see this, consider two regular expressions E1

and E2. Let # be a fresh symbol and let E#
1 and E#

2 be the expressions obtained from
E1 and E2, respectively, by substituting every occurrence of a symbol a with the ex-
pression a∗ #. Let r be another fresh letter reserved for the roots of the trees. Clearly,
the language defined by E1 is contained in the language defined by E2 if and only if
the DTD r → E#

1 is bounded repairable into the DTD r → E#
2 (one direction is trivial

and the other is easily shown by contraposition). As the latter DTDs are non-recursive
(they define trees of height two), this shows that the bounded repair problem between
non-recursive non-deterministic DTDs is PSPACE-hard, and this holds even when the
alphabets are fixed.

We can also provide a CONP lower bound for the analogous problem when the lan-
guages are represented by non-recursive deterministic DTDs over fixed alphabets. This
lower bound follows easily from a reduction from the validity problem for propositional
formulas in disjunctive form. A similar reduction was given in [Benedikt et al. 2013]
for languages of words recognized by deterministic finite automata. The additional
complication here is that we have to fix the source and the target alphabets; however,
the reduction is still possible by encoding the valuation of each variable with a block
of nodes labeled over a binary alphabet.

PROPOSITION 7.7. The bounded repair problem between languages represented by
non-recursive non-deterministic (resp., deterministic) DTDs with both source and target
alphabets fixed is PSPACE-hard (resp., CONP-hard).

8. THE UNIVERSAL CASE
In this section we consider the so-called universal case of the bounded repairability
problem, namely, a variant of the problem where the source language is assumed uni-
versal (i.e., equal to TΣ) and the target language is represented by a stepwise automa-
ton T .

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42

We recall the assumption that any stepwise automaton T is trimmed (i.e., every
state of T appears in some accepting run of A on some input tree). Under this assump-
tion, we say that an automaton T is complete over Σ if for every tree t ∈ TΣ there is a
(possibly non-accepting) run of T on t.

Here we also make use of deterministic visibly pushdown transducers [Raskin and
Servais 2008; Alur and Madhusudan 2009] as suitable devices that transform un-
ranked trees in a streaming fashion. These devices receive the serialized version of
an unranked tree and output the serialized version of another unranked tree. By a
slight abuse of notation we identify unranked trees with their serializations.

The following result gives equivalent conditions for bounded repairability in the uni-
versal case.

PROPOSITION 8.1. Given an alphabet Σ and an automaton T = (∆,Q, δ, δ0, F), the
following conditions are equivalent:

— TΣ is bounded repairable into L (T),
— T is complete over Σ,
— there exist k ∈ N and a deterministic visibly pushdown transducer that receives any

unranked tree t over Σ and outputs an unranked tree t′ such that dist(t, t′) ≤ k and
ext(t′) ∈ L (T).
PROOF. Here we only prove that the second item implies the third one (the other

two directions are explained in the appendix). Suppose that T = (∆,Q, δ, δ0, F) is a
(trimmed) stepwise automaton that is complete over Σ. It is not difficult to show that
from the fact that T is complete over Σ it follows that TΣ is bounded repairable into
L (T). The interesting result is that, when we identify unranked trees with their se-
rializations, the repair strategy of TΣ into L (T) can be implemented by a determinis-
tic visibly pushdown transducer. More specifically, the deterministic visibly pushdown
transducer outputs, at the very first step and independently of the input, a fixed pre-
fix of a serialized unranked tree (this represents a portion of the repaired tree); then
it copies the input t as a continuation of the prefix formerly constructed, mimicking
at the same time the computation of the stepwise automaton T on ext(t); finally, the
transducer terminates by outputting a suitable suffix in such a way that the corre-
sponding repaired tree belongs to the language ext−1(L (T)). The difficult part of this
proof is to show that there is a single prefix that, no matter how it is prolonged, can be
completed into a serialized tree that belongs to the language ext−1(L (T)). Namely, to
complete the proof we need to show the following claim.

CLAIM 2. There are a symbol a ∈ Σ, a state p ∈ Q, and a sequence of unranked
trees u1, . . . , un over Σ such that for every unranked tree t over Σ, there is a sequence of
unranked trees v1, . . . , vm over Σ satisfying p ∈ δ(ext(a(u1, . . . , un, t, v1, . . . , vm))).

We prove the claim by contraposition. Suppose that (⋆) for every symbol a ∈ Σ, every
state p ∈ Q, and every sequence u1, . . . , un of trees, there exists a tree t such that, for
every sequence of trees v1, . . . , vm, p /∈ δ(ext(a(u1, . . . , un, t, v1, . . . , vm))). We fix an arbi-
trary symbol a ∈ Σ and an enumeration p1, . . . , pN of all states in Q. Then, by applying
the hypothesis (⋆) to the symbol a, to each state p ∈ {p1, . . . , pN}, and to increasing
sequences of trees u1, . . . , un, we construct a tree t′ over Σ on which T has no valid run
(this would imply that T is not complete over Σ). First, we let p = p1 and n = 0, and
we obtain from (⋆) that there is a tree t1 such that p1 /∈ δ(ext(a(t1, v1, . . . , vm))) for all
sequences of trees v1, . . . , vm. Similarly, if we let p = p2, n = 1, and u1 = t1, we know from
(⋆) that there is a tree t2 such that p2 /∈ δ(ext(a(t1, t2, v1, . . . , vm))) for all sequences
of trees v1, . . . , vm. By applying a simple inductive argument, we can construct a se-
quence of trees t1, . . . , tN such that for every index 1 ≤ i ≤ N , pi /∈ δ(ext(a(t1, . . . , tN))).

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:43

Since p1, . . . , pN are all and only the states of T , we derive that T has no valid run on
ext(a(t1, . . . , tN)). This shows that T is not complete over Σ.

From the above characterization one can derive a polynomial-time algorithm that
decides whether TΣ is bounded repairable into L (T), when T is given by a determin-
istic stepwise automaton. For this it is sufficient to turn T into a trimmed deterministic
automaton T ′ = (Σ,Q′, δ′, δ′0, F

′) over Σ and then check that (i) for every symbol a ∈ Σ,
δ′0(a) ≠ ∅ and (ii) for every pair of states q1, q2 ∈ Q′, δ′(q1, q2) ≠ ∅. When the target
language is represented by a non-deterministic stepwise automaton T , the complexity
increases to EXP: one can simply determinize T and then use the decision procedure
for the deterministic case.

As one could expect, the above complexity bounds (i.e., P for deterministic stepwise
automata and EXP for non-deterministic stepwise automata) are tight. The hardness
proofs can be derived from reductions of the emptiness and universality problems,
respectively, on the corresponding classes of automata (see appendix).

PROPOSITION 8.2. The bounded repair problem in the universal case when the tar-
get language is represented by a non-deterministic (resp., deterministic) stepwise au-
tomaton is EXP-complete (resp., P-complete).

9. CONCLUSIONS
In the present paper we have investigated the bounded repairability problem for reg-
ular tree languages. We have provided an effective characterization of bounded re-
pairability and characterized the complexity of testing whether a given source lan-
guage S is bounded repairable w.r.t. a given target language T . The characterization
can be used with a number of different formalisms for representing the tree languages:
tree automata, XML Schemas, DTDs, as well as their non-recursive and determinis-
tic restrictions. While in general the problem is CONEXP-complete, its complexity is
considerably reduced for DTDs over fixed alphabets. In the latter case the problem
becomes CONP-complete or PSPACE-complete, depending on whether the DTDs are
deterministic or not. Finally, we have also considered the variant of the problem when
the source language is set to be universal. In this case, we have shown that the prob-
lems is EXP-complete in general, and becomes tractable (P-complete, in fact) when a
deterministic bottom-up automaton is used.

Several directions of future work can be envisioned. Bounded repairability is essen-
tially a generalization of inclusion between tree languages modulo a bounded number
of editing operations. One could attempt to further generalize it allow a number of
editing operations that is bounded by a ratio of the size of the input tree. In [Benedikt
et al. 2014] it is shown how such a generalized notion of repairability can be computed
for regular string languages. It would be interesting to see if the employed methods
can be adapted to the setting of regular tree languages. Another direction is bounded
repairability in the streaming setting: not only the pair of source and target languages
need to be bounded repairable, but, furthermore, the repair must be executable by a
transducer, namely, a machine with a possibly infinite state space that makes one pass
over the serialization of the input tree while producing a serialization of the output
tree. Proposition 8.1 shows that in the unrestricted case visibly pushdown transducers
are expressive enough to implement bounded-cost streaming repairs, whenever these
exist. In the general case, however, visibly pushdown transducers may be too limit-
ing [Bourhis et al. 2013].

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44

REFERENCES
Foto Afrati and Phokion Kolaitis. 2009. Repair checking in inconsistent databases: algorithms and complex-

ity. In Proceedings of the 12th International Conference on Database Theory (ICDT). ACM, 31–41.
Alfred Aho and Thomas Peterson. 1972. A minimum distance error-correcting parser for context-free lan-

guages. SIAM J. Comput. 1, 4 (1972), 305–312.
Rajeev Alur and Parthasarathy Madhusudan. 2009. Adding nesting structure to words. Journal of the ACM

(JACM) 56, 3 (2009), 16.
Shunichi Amano, Leonid Libkin, and Filip Murlak. 2009. XML schema mappings. In Proceedings of the 28th

Symposium on Principles of Database Systems. 33–42.
Anonymous. details omitted due to double-blind reviewing.
Timos Antonopoulos, Floris Geerts, Wim Martens, and Frank Neven. 2013. Generating, sampling and count-

ing subclasses of regular tree languages. Theory of Computing Systems 52, 3 (2013), 542–585.
Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent query answers in inconsistent

databases. In Proceedings of the 18th ACM SIGMOD Symposium on Principles of Database Systems
(PODS). ACM, 68–79.

Marcelo Arenas and Leonid Libkin. 2008. XML data exchange: consistency and query answering. J. ACM
55, 2 (2008).

Charles Babbage. 1864. Passages from the Life of a Philosopher. Longman, Green, Longman, Roberts, &
Green.

Michael Benedikt, Gabriele Puppis, and Cristian Riveros. 2013. Bounded repairability of word languages. J.
Comput. System Sci. 79, 8 (2013), 1302–1321.

Michael Benedikt, Gabriele Puppis, and Cristian Riveros. 2014. The per-character cost of repairing word
languages. Theoretical Computer Science 539 (2014), 38–67.

Leopoldo Bertossi. 2011. Database repairing and consistent query answering. Synthesis Lectures on Data
Management 3, 5 (2011), 1–121.

Philip Bille. 2005. A survey on tree edit distance and related problems. Theoretical Computer Science (TCS)
337, 1 (2005), 217–239.

Peter Van Emde Boas. 1997. The convenience of tilings. In Complexity, Logic, and Recursion Theory. Marcel
Dekker Inc, 331–363.

Mikołaj Bojańczyk, Leszek A Kołodziejczyk, and Filip Murlak. 2011. Solutions in XML data exchange. In
Proceedings of the 14th International Conference on Database Theory. ACM, 102–113.

Utsav Boobna and Michel de Rougemont. 2004. Correctors for XML data. In Database and XML Technolo-
gies. 97–111.

Pierre Bourhis, Gabriele Puppis, and Cristian Riveros. 2013. Which DTDs are streaming bounded re-
pairable?. In Proceedings of the 16th International Conference on Database Theory (ICDT). ACM, 57–68.

Anne Brüggemann-Klein and Derick Wood. 1998. One-unambiguous regular languages. Information and
Computation 142, 2 (1998), 182–206.

Julien Carme, Joachim Niehren, and Marc Tommasi. 2004. Querying unranked trees with stepwise tree
automata. In Rewriting Techniques and Applications (RTA). Springer, 105–118.

Jérôme Champavère, Rémi Gilleron, Aurélien Lemay, and Joachim Niehren. 2009. Efficient inclusion check-
ing for deterministic tree automata and XML schemas. Information and Computation 207, 11 (2009),
1181–1208.

Shan Chen, Dan Hong, and Vincent Y Shen. 2005. An experimental study on validation problems with
existing html webpages. In Proceedings of the 2005 International Conference on Internet Computing,
ICOMP’05. 373.

Dario Colazzo, Giorgio Ghelli, Luca Pardini, and Carlo Sartiani. 2013. Almost-linear inclusion for XML
regular expression types. ACM Trans. Database Syst. 38, 3 (2013), 15.

Hubert Comon, Max Dauchet, Rémi Gilleron, Christof Löding, Florent Jacquemard, Denis Lugiez, Sophie
Tison, and Marc Tommasi. 2007. Tree Automata Techniques and Applications. Available on: http://www.
grappa.univ-lille3.fr/tata. (2007).

Grapham Cormode and S. Muthukrishnan. 2007. The String Edit Distance Matching Problem with Moves.
ACM Trans. Algorithms 3, 1 (2007), 2:1–2:19. DOI:http://dx.doi.org/10.1145/1186810.1186812

Jay Earley. 1970. An efficient context-free parsing algorithm. Commun. ACM 13, 2 (1970), 94–102.
David Fallside and Priscilla Walmsley. October 2004. XML Schema Part 0: Primer Second Edition. W3C

Recommendation.
Wenfei Fan and Philip Bohannon. 2008. Information preserving XML schema embedding. ACM Transactions

on Database Systems (TODS) 33, 1 (2008), 4.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1145/1186810.1186812

Bounded Repairability for Regular Tree Languages A:45

Sergio Flesca, Filippo Furfaro, Sergio Greco, and Ester Zumpano. 2005. Querying and repairing inconsistent
XML data. In Web Information Systems Engineering (WISE) (LNCS), Vol. 3806. Springer, 175–188.

Gösta Grahne and Alex Thomo. 2004. Query answering and containment for regular path queries under
distortions. In Foundations of Information and Knowledge Systems (FOIKS). Springer, 98–115.

Steven Grijzenhout and Maarten Marx. 2013. The quality of the XML web. Web Semantics: Science, Services
and Agents on the World Wide Web 19 (2013), 59–68.

John Hopcroft and Jeffrey Ullman. 1979. Introduction to automata theory, languages, and computation.
Addison-Wesley.

Flip Korn, Barna Saha, Divesh Srivastava, and Shanshan Ying. 2013. On repairing structural problems in
semi-structured data. Proceedings of the VLDB Endowment 6, 9 (2013), 601–612.

William Lidwell, Kritina Holden, and Jill Butler. 2010. Universal Principles of Design, Revised and Updated:
125 Ways to Enhance Usability, Influence Perception, Increase Appeal, Make Better Design Decisions.
Rockport Publishers.

Wim Martens, Frank Neven, and Thomas Schwentick. 2009. Complexity of Decision Problems for XML
Schemas and Chain Regular Expressions. SIAM J. Comput. 39, 4 (2009), 1486–1530.

Wim Martens, Frank Neven, Thomas Schwentick, and Geert Jan Bex. 2006. Expressiveness and complexity
of XML Schema. ACM Transactions on Database Systems (TODS) 31, 3 (2006), 770–813.

Wim Martens and Joachim Niehren. 2007. On the minimization of XML schemas and tree automata for
unranked trees. Journal of Computer and System Sciences (JCSS) 73, 4 (2007), 550–583.

Ejike Ofuonye, Patricia Beatty, Scott Dick, and James Miller. 2010. Prevalence and classification of web
page defects. Online Information Review 34, 1 (2010), 160–174.

Erhard Rahm and Philip A Bernstein. 2001. A survey of approaches to automatic schema matching. the
VLDB Journal 10, 4 (2001), 334–350.

Jean-François Raskin and Frédéric Servais. 2008. Visibly Pushdown Transducers. In Automata, Languages
and Programming (ICALP). LNCS, Vol. 5126. Springer, 386–397.

Thomas Schwentick. 2007. Automata for XML – a survey. Journal of Computer and System Sciences (JCSS)
73, 3 (2007), 289–315.

Luc Segoufin and Cristina Sirangelo. 2007. Constant-Memory Validation of Streaming XML Documents
Against DTDs. In Database Theory - ICDT 2007, 11th International Conference, Barcelona, Spain, Jan-
uary 10-12, 2007, Proceedings. 299–313.

Luc Segoufin and Victor Vianu. 2002. Validating streaming XML documents. In Proceedings of the 21th ACM
SIGMOD Symposium on Principles of Database Systems (PODS). ACM, 53–64.

Helmut Seidl. 1990. Deciding equivalence of finite tree automata. SIAM J. Comput. 19, 3 (1990), 424–437.
Slawomir Staworko and Jan Chomicki. 2006. Validity-sensitive querying of XML databases. In Current

Trends in Database Technology (EDBT workshops). LNCS, Vol. 4254. Springer, 164–177.
Slawomir Staworko, Emmanuel Filiot, and Jan Chomicki. 2008. Querying Regular Sets of XML Documents.

In International Workshop on Logic in Databases (LiD).
Larry Stockmeyer and Albert Meyer. 1973. Word problems requiring exponential time (Preliminary Report).

In Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC). ACM, 1–9.
Nobutaka Suzuki. 2005. Finding an Optimum Edit Script between an XML Document and a DTD. In Pro-

ceedings of the 2005 ACM symposium on Applied computing. ACM, 647–653.
Kuo-Chung Tai. 1979. The tree-to-tree correction problem. Journal of the ACM (JACM) 26, 3 (1979), 422–

433.
Robert Wagner. 1974. Order-n correction for regular languages. Communications of the ACM (CACM) 17, 5

(1974), 265–268.
Daniel H. Younger. 1967. Recognition and Parsing of Context-Free Languages in Time nˆ3. Information and

Control 10, 2 (1967), 189–208.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46

A. APPENDIX

LEMMA 7.5. Given a non-deterministic (resp., deterministic) DTD D that defines
a restriction language R over an alphabet Σ, one can compute in polynomial time a
non-deterministic (resp., a deterministic) stepwise automaton R = (Σ,Q, δ, δ0, F) that
recognizes R and whose state space can be partitioned into k ≤ 2∣Σ∣ subsets Q1, . . . ,Qk
such that

— every component of R is contained in some set Qi,
— for all states q1, q2, q ∈ Q, if q ∈ δ(q1, q2) and q2 and q are in different components, then
q2 ∈ Qi and q ∈ Qj for some 1 ≤ i < j ≤ k.

PROOF. In this proof we follow the translation from DTDs to equivalent stepwise
automata given in [Champavère et al. 2009]. Specifically, we first translate a DTD to
a special form of stepwise automaton with ε-moves (called factorized automaton) and
then we translate the latter automaton to an equivalent stepwise automaton. This
translation preserves determinism by a suitable notion of determinism for factorized
automata. We recall below the definition of factorized automaton from [Champavère
et al. 2009].

A factorized automaton is a tuple A = (Σ,Q1 ⊎ Q2, δ0, δ, δε, F), where Σ is an input
alphabet used to label leaves of curried trees, Q1 and Q2 are two disjoint sets of states,
δ0 ∶ Σ → 2Q1⊎Q2 is an assignment of labels to states, δ ∶ Q1 ×Q2 → 2Q1⊎Q2 is a transition
function, δε ∶ Q1 ⊎ Q2 → 2Q1⊎Q2 , and F ⊆ Q1 ⊎ Q2 is a set of final states. Note that,
according to the above definition, for every transition rule q1@q2 → q of a factorized
automaton, we have that q1 belongs to the first set Q1 of states and q2 belongs to the
second set Q2 of states. We call this last property factorization of states. We shortly
write p →ε q (resp., p →∗

ε q) whenever q ∈ δε(p) (resp., whenever there is a sequence of
states q0, . . . , qn, with n ∈ N, such that q0 = p, qn = q, and qi+1 ∈ δε(qi) for all 0 ≤ i < n).

We can extend in a natural way the notions of run and transition graph of a factor-
ized automaton A. The latter consists of states of A, horizontal edges, vertical edges,
and ε-edges. We can thus speak of a strongly connected component of a factorized au-
tomaton A. In this case, the accessibility relation between states takes into account
the horizontal edges, the vertical edges, and the ε-edges of the transition graph of A.
Accordingly, we denote by L (A ∣X) the set of all contexts realized within a component
X of A.

We say that a factorized automaton A = (Σ,Q1 ⊎Q2, δ0, δ, δε, F) is deterministic if

(1) the sub-automaton (Σ,Q1 ⊎ Q2, δ0, δ, F), thought of as a stepwise automaton, is
deterministic,

(2) for all states p ∈ Q1 ⊎ Q2 and all states q, q′ ∈ Q1 (resp., q, q′ ∈ Q2), p →∗
ε q and

p →∗
ε q

′ imply q = q′, i.e. the ε-transition relation can be described as a pair of
partial functions δε,1 ∶ Q1 ⊎Q2 ⇀ Q1 and δε,1 ∶ Q1 ⊎Q2 ⇀ Q2.

From now on we fix a DTD D = (Σ, d, S), which can be either deterministic or
non-deterministic (depending on this, the resulting automata will be deterministic
or non-deterministic). Given a symbol a of the alphabet of D, we denote by Aa =
(Σ, Pa, pa,0, δa, Fa) the Glushkov automaton [Brüggemann-Klein and Wood 1998] that
recognizes the regular language L (d(a)) ⊆ Σ∗. Recall that Aa can be constructed
in polynomial time in the size of d(a) and Aa is deterministic iff d(a) is determinis-
tic [Brüggemann-Klein and Wood 1998].

We recall the translation of the DTD D into an equivalent factorized automaton R
(see, for instance, Theorem 5 in [Champavère et al. 2009]). The states of the factorized
automatonR are given by the disjoint union of the alphabet Σ, whose elements are now
thought of as states, and the sets of states of the finite automata Aa, for all symbols

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:47

a ∈ Σ. The assignment of initial states ofR to labels is given by the function δ0(a) = pa,0,
where pa,0 is the initial state of Aa. The transition relation δ of R contains all rules of
the form p@b → q such that δa(p, b) = q, for some a, b ∈ Σ and some p, q ∈ Pa. The ε-
transition relation δε connects every final state p ∈ Fa, with a ∈ Σ, to the state a of R.
Finally, the final states of R are the states in Fa, for any initial symbol a of the DTD.
It is easy to check that the defined object R is a deterministic factorized automaton if
each automaton Aa is deterministic.

As shown in [Champavère et al. 2009] (Proposition 4), the factorized automaton R
can be turned in polynomial time into an equivalent stepwise automaton R′, having
the same set Q = Σ ⊎ ⊎a∈Σ Pa of states and possibly more transitions. This is done
by replacing each transition p@b → q in R by the set of all transitions p′@r → q for
which there exist two sequences of ε-moves p′ →∗

ε p and r →∗
ε b in R. Observe that if

R is deterministic, then the factorization of states of R guarantees that the resulting
stepwise automaton R′ is also deterministic.

We make another important remark related to the structure of the automaton R′:
the translation from R to R′ defined above preserves the set of states and the acces-
sibility relation in the corresponding transition graph and hence it also preserves the
strongly connected components. Therefore, in order to complete the proof of the lemma,
it is sufficient to show that the following claim hold for the factorized automaton R:

CLAIM 3. The set of states of R can be partitioned into k ≤ 2∣Σ∣ subsets Q1, . . . ,Qk
such that

— every component of R is contained in some set Qi,
— for every transition p@b → q and for every sequence of ε-moves r →∗

ε b in R, if r and q
are in different components, then r ∈ Qi and q ∈ Qj for some 1 ≤ i < j ≤ k.

PROOF. Let Q2,Q4, . . . ,Q2h be the strongly connected components of R that contain
at least one state from Σ. Furthermore, for every 1 ≤ i ≤ h, let Q2i−1 be the union of
the sets Pb ∖ Q2i, for any b ∈ Σ ∩ Q2i. Recall that Pb is the state space of the word
automaton Ab, which is contained in the state space of R. Below we show that the sets
Q1,Q2, . . . ,Qk, where k = 2h, define the desired partition.

First of all, note that h ≤ ∣Σ∣ and hence k ≤ 2∣Σ∣. It is also easy to check that the sets
Q1, . . . ,Qk form a partition of the state space of R. Indeed, every state of R is either a
symbol in Σ and hence it belongs to some set among Q2,Q4, . . . ,Q2h, or it is a state of
some automaton Ab and hence it belongs to some set among Q1,Q3, . . . ,Q2h−1.

We also claim that every component of R is contained in some set Qi, with 1 ≤ i ≤ k.
Indeed, any component of R either contains a state from Σ and hence it coincides with
some set among Q2,Q4, . . . ,Q2h, or it consists only of states from a single automaton
Ab and hence it is contained into some set among Q1,Q3, . . . ,Q2h−1.

We now check the second item of the claim. We can assume, without loss of gen-
erality, that the sets Q1, . . . ,Qk have been listed according to a topological order that
respects the accessibility relation of the transition graph of R. Let us consider a tran-
sition p@b → q and a sequence of ε-moves r →∗

ε b in R and suppose that r and q are in
different components of R. We distinguish between two cases, depending on whether r
and b are in the same component or not. If r and b are in the same component, then we
know that this component must coincide with a set among Q2,Q4, . . . ,Q2h, say Qi. Re-
call that q belongs to a component different from Qi, say Qj . Since the sets Q1, . . . ,Qk
were listed according to a topological order, we immediately obtain i < j. In the sec-
ond case, r and b belong to different components. From the definition of ε-moves of R,
we know that r is a final state of Ab and hence we have r ∈ Q2i−1 and b ∈ Q2i, for some
1 ≤ i ≤ h. Finally, recall that q belongs to a component different from Q2i, say Qj . Again,

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48

since the sets Q1, . . . ,Qk were listed according to a topological order, we obtain 2i < j.

In view of the previous arguments, Claim 3 immediately implies our lemma.

PROPOSITION 8.1. Given an alphabet Σ and an automaton T = (∆,Q, δ, δ0, F), the
following conditions are equivalent:

— TΣ is bounded repairable into L (T),
— T is complete over Σ,
— there exist k ∈ N and a deterministic visibly pushdown transducer that receives any

unranked tree t over Σ and outputs an unranked tree t′ such that dist(t, t′) ≤ k and
ext(t′) ∈ L (T).
PROOF. First observe that the third item trivially implies the first one. Below, we

prove that the first item implies the second one, by contraposition. Suppose that T =
(∆,Q, δ, δ0, F) is a (trimmed) stepwise automaton that is not complete over Σ. Let t0 be
an unranked tree over Σ such that δ(ext(t0)) = ∅, let a be any symbol from Σ, and, for
every n ≥ 1, let

tn = a(t0, . . . , t0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

).

Clearly, ext(tn) ∈ TΣ. Moreover, at least n edit operations are required to repair the tree
tn into the language ext−1(L (T)). This shows that TΣ is not bounded repairable into
L (T).

Finally, we prove that the second item implies the third one. Suppose that T =
(∆,Q, δ, δ0, F) is a (trimmed) stepwise automaton that is complete over Σ. It is not dif-
ficult to show that from the fact that T is complete over Σ it follows that TΣ is bounded
repairable into L (T). The interesting result is that, when we identify unranked trees
with their serializations, the repair strategy of TΣ into L (T) can be implemented by a
deterministic visibly pushdown transducer. More specifically, the deterministic visibly
pushdown transducer outputs, at the very first step and independently of the input,
a fixed prefix of a serialized unranked tree (this represents a portion of the repaired
tree); then it copies the input t as a continuation of the prefix formerly constructed,
mimicking at the same time the computation of the stepwise automaton T on ext(t); fi-
nally, the transducer terminates by outputting a suitable suffix in such a way that the
corresponding repaired tree belongs to the language ext−1(L (T)). The difficult part of
this proof is to show that there is a single prefix that, no matter how it is prolonged,
can be completed into a serialized tree that belongs to the language ext−1(L (T)). To
show this, we prove the following claim under the assumption that the automaton T
is complete:

CLAIM 4. There are a symbol a ∈ Σ, a state p ∈ Q, and a sequence of unranked
trees u1, . . . , un over Σ such that for every unranked tree t over Σ, there is a sequence of
unranked trees v1, . . . , vm over Σ satisfying p ∈ δ(ext(a(u1, . . . , un, t, v1, . . . , vm))).

PROOF. We prove the claim by contraposition. Suppose that (⋆) for every symbol
a ∈ Σ, every state p ∈ Q, and every sequence u1, . . . , un of trees, there exists a tree t such
that, for every sequence of trees v1, . . . , vm, p /∈ δ(ext(a(u1, . . . , un, t, v1, . . . , vm))). We fix
an arbitrary symbol a ∈ Σ and an enumeration p1, . . . , pN of all states in Q. Then, by ap-
plying the hypothesis (⋆) to the symbol a, to each state p ∈ {p1, . . . , pN}, and to increas-
ing sequences of trees u1, . . . , un, we construct a tree t′ over Σ on which T has no valid

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Bounded Repairability for Regular Tree Languages A:49

run (this would imply that T is not complete over Σ). First, we let p = p1 and n = 0, and
we obtain from (⋆) that there is a tree t1 such that p1 /∈ δ(ext(a(t1, v1, . . . , vm))) for all
sequences of trees v1, . . . , vm. Similarly, if we let p = p2, n = 1, and u1 = t1, we know from
(⋆) that there is a tree t2 such that p2 /∈ δ(ext(a(t1, t2, v1, . . . , vm))) for all sequences
of trees v1, . . . , vm. By applying a simple inductive argument, we can construct a se-
quence of trees t1, . . . , tN such that for every index 1 ≤ i ≤ N , pi /∈ δ(ext(a(t1, . . . , tN))).
Since p1, . . . , pN are all and only the states of T , we derive that T has no valid run on
ext(a(t1, . . . , tN)). This shows that T is not complete over Σ.

Turning back to the main proof, we can use the above claim to construct a deter-
ministic visibly pushdown transducer that repairs any tree over Σ into a tree in the
language ext−1(L (T)) with uniformly bounded number of edit operations. Let a, p,
u1, . . . , un be as in the claim above. Since T is trimmed, there is a context C over ∆
such that δ(p,C) ∩ F ≠ ∅ and the automaton T accepts the context C when the place-
holder is assigned the state p. From now on we identify the unranked trees u1, . . . , un
over Σ with the corresponding serializations over Σ. Similarly, we can represent the
context C with a pair (Cprefix,Csuffix) of sequences of opening and closing tags such that,
for every tree t, Cprefix ⋅ t ⋅Csuffix is the serialization of the unranked tree ext−1(C ○ext(t))
(note that the sequences Cprefix and Csuffix need not to be well-parenthesized). In par-
ticular, any curried tree of the form C ○ ext(a(u1, . . . , un, t, v1, . . . , vm)) is represented by
the word

Cprefix ⋅ ⟨a⟩ ⋅ u1 ⋅ . . . ⋅ un ⋅ t ⋅ v1 ⋅ . . .⋯vm ⋅ ⟨a/⟩ ⋅Csuffix.

Moreover, from the previous claim and assumptions, it follows that for every tree t,
there is a sequence of trees v1, . . . , vm such that C ○ ext(a(u1, . . . , un, t, v1, . . . , vm)) is
accepted by T . Therefore, the deterministic visibly pushdown transducer that imple-
ments the bounded repair strategy of TΣ into L (T) can be constructed as follows. First,
it outputs the prefix Cprefix ⋅⟨a⟩ ⋅u1 ⋅ . . . ⋅un, independently of the input; then, it copies the
serialized input tree t and it mimics at the same time the computation of T on ext(t)
(this is possible since stepwise automata can be translated into equivalent determin-
istic visibly pushdown automata); finally, on the basis of the state reached by T after
parsing ext(t), the transducer outputs a suitable suffix of the form v1 ⋅ . . . ⋅vm ⋅⟨a/⟩ ⋅Csuffix

in such a way that the final output represents a tree inside the language ext−1(L (T))
(this is possible thanks to the above claim). To conclude the proof it is sufficient to
observe that the tree output by the transducer can be obtained from its input by per-
forming a uniformly bounded number of insert operations.

PROPOSITION 8.2. The bounded repair problem in the unrestricted case when the
target language is represented by a non-deterministic (resp., deterministic) stepwise
automaton is EXP-complete (resp., P-complete).

PROOF. From Proposition 8.1 one can derive a polynomial-time algorithm that de-
cides whether TΣ is bounded repairable into L (T) when T is given by a deterministic
stepwise automaton. For this it is sufficient to first turn T into a trimmed automaton
T ′ = (Σ,Q′, δ′, δ′0, F

′) over Σ and then check that (i) for every symbol a ∈ Σ, δ′0(a) ≠ ∅
and (ii) for every pair of states q1, q2 ∈ Q′, δ′(q1, q2) ≠ ∅. For a stepwise automaton,
this procedure takes polynomial time in the size of T . On the other hand, if T is non-
deterministic, one can determinize T and then check property (i) and (ii) over its de-
terminization. This algorithm takes exponential time for the non-deterministic case.
Therefore, we conclude that the problem is in P for deterministic stepwise automata
and in EXP for non-deterministic stepwise automata.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:50

For the lower bounds, we show here that the problem is EXP-hard for non-
deterministic stepwise automata by a reduction of the universality problem for step-
wise automata. For the P hardness of the deterministic case, the reduction is similar
but one has to use the emptiness problem of deterministic tree automata that is well
known to be P-complete.

Consider a trimmed stepwise automata T = (Σ,Q, δ, δ0, F) as an instance of the uni-
versality problem. We define the stepwise automata T ′ = (Σ ∪ {#},Q ∪ {q#, qf}, δ′, δ0 ∪
(#, q#),{qf}) where # is a new label and q#, qf are new states. For the transition
function, we define:

δ′ = δ ∪ (F × {q#} × {qf}) ∪ ({q#} × F × {qf}) ∪ ({q#} × {q#} × {q#}) ∪
(Q′ × {qf} × {qf}) ∪ ({qf} ×Q′ × {qf})

where Q′ = Q ∪ {q#, qf} is the complete set of states in T ′. In the sequel we show that
L (T) is universal if, and only if, TΣ∪{#} is bounded repairable into L (T ′).

Suppose that T contains the universal tree language, namely, TΣ ⊆ L (T). By Propo-
sition 8.1, we only need to show that T ′ is complete over Σ ∪ {#}. First, notice that
T ′ is already trimmed given that T is trimmed and one can easily check that states
q# and qf appear in some accepting run. To show completeness, let t ∈ TΣ∪{#} be any
curried tree. If t does not contain label #, then there exists trivially a run of T ′ over t
given that δ ⊆ δ′ and L (T) is universal. Now suppose that t contains at least one node
labeled by #. If t only contains #-labels, then it is straightforward to show a run of
T ′ over t. Otherwise, let t′ be the smallest subtree of t such that t′ = t1@t2 and either
t1 ∈ T{#} and t2 ∈ TΣ or vice versa (one can easily show that t′ always exists in t). With-
out loss of generality, take t2 ∈ TΣ. Since L (T) is universal, we know that there exists
an accepting run of T over t2 that reaches a final state q. On the other hand we have
that q# ∈ δ′(t1) and then qf ∈ δ′(t′). Finally, one can easily check by the definition of T ′
that for every context C ∈ CΣ∪{#}, it holds that qf ∈ δ(qf ,C). This implies that qf ∈ δ(t)
and, therefore, T is complete over Σ ∪ {#}.

For the other direction, suppose that TΣ ⊈ L (T) and take a tree t ∉ L (T). Define a
new tree t′ = t@ #. By the construction of T ′, one can easily check that δ′(t′) = ∅ and
we have that T ′ is not complete over Σ∪{#}. From this, we conclude that the bounded
repair problem in the unrestricted case for non-deterministic stepwise automata is
EXP-hard as well. This completes the proof.

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	Related work
	Regular languages of trees
	The bounded repair problem for trees
	Characterization of bounded repairability
	Components of stepwise automata
	Synopsis trees
	Coverings

	Proof of the main characterization
	From covering to repair
	From repair to covering

	Complexity analysis
	Upper bound
	Lower bound
	Simpler instances

	The universal case
	Conclusions
	Appendix

